Skip to main content

Advertisement

Log in

Chromatic pupillography in hemianopia patients with homonymous visual field defects

  • Neurophthalmology
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The pupil light reflex is considered to be a simple subcortical reflex. However, many studies have proven that patients with isolated occipital lesions with homonymous hemianopia show pupillary hemihypokinesia. Our hypothesis is that the afferent pupillary system consists of two pathways: one via intrinsically photosensitive retinal ganglion cells (ipRGCs), the other running through the normal RGCs via the visual cortex. The purpose of this study was to test the hypothesis of these two separate pupillomotor pathways.

Methods

12 patients (59.1 ± 18.8 years) with homonymous hemianopia due to post-geniculate lesions of the visual pathway and 20 normal controls (58.6 ± 12.9 years) were examined using chromatic pupillography: stimulus intensity was 28 lx corneal illumination, stimulus duration was 4.0 s, and the stimulus wavelengths were 420 ± 20 nm (blue) and 605 ± 20 nm (red), respectively. The examined parameters were baseline pupil diameter, latency, and relative amplitudes (absolute amplitudes compared to baseline), measured at maximal constriction, at 3 s after stimulus onset, at stimulus offset, and at 3 s and 7 s after stimulus offset.

Results

The relative amplitudes for the red stimulus were significantly smaller for hemianopia patients compared to the normal controls [maximal constriction: 35.6 ± 5.9% (hemianopia) to 42.3 ± 5.7% (normal); p = 0.004; 3 s after stimulus onset: p = 0.004; stimulus offset: p = 0.001]. No significant differences in any parameter were found between the two groups using the blue stimulus.

Conclusions

The results support the hypothesis that the ipRGC pathway is mainly subcortical, whereas a second, non-ipRGC pathway via the occipital cortex exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alexandridis E, Krastel H, Reuther R (1979) Disturbances of the pupil reflex associated with lesions of the upper visual pathway (author's transl). Albrecht Von Graefes Arch Klin Exp Ophthalmol 209:199–208

    Article  CAS  PubMed  Google Scholar 

  2. Barris RW (1936) A pupillo-constrictor area in the cerebral cortex of the cat and its relationship to the pretectal area. J Comp Neurol 63:353–368

    Article  Google Scholar 

  3. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    Article  CAS  PubMed  Google Scholar 

  4. Bridge H, Jindahra P, Barbur J et al (2011) Imaging reveals optic tract degeneration in hemianopia. Invest Ophthalmol Vis Sci 52:382–388

    Article  PubMed  Google Scholar 

  5. Cibis GW, Campos EC, Aulhorn E (1975) Pupillary hemiakinesia in suprageniculate lesions. Arch Ophthalmol 93:1322–1327

    Article  CAS  PubMed  Google Scholar 

  6. Dacey DM, Liao HW, Peterson BB et al (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433:749–754

    Article  CAS  PubMed  Google Scholar 

  7. Distler C, Hoffmann KP (1989) The pupillary light reflex in normal and innate microstrabismic cats, II: retinal and cortical input to the nucleus praetectalis olivaris. Vis Neurosci 3:139–153

    Article  CAS  PubMed  Google Scholar 

  8. Gamlin PD, Mcdougal DH, Pokorny J et al (2007) Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vis Res 47:946–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gooley JJ, Lu J, Chou TC et al (2001) Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci 4:1165

    Article  CAS  PubMed  Google Scholar 

  10. Goto K, Miki A, Yamashita T et al (2015) Sectoral analysis of the retinal nerve fiber layer thinning and its association with visual field loss in homonymous hemianopia caused by post-geniculate lesions using spectral-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol

  11. Harms H (1949) Grundlagen, Methodik und Bedeutung der Pupillenperimetrie für die Physiologie und Pathologie des Sehorgans. Albrecht v Graefes Arch Ophthal 149:1–68

    Article  Google Scholar 

  12. Harms H (1951) Hemianopic pupillary rigidity. Klin Monbl Augenheilkd Augenarztl Fortbild 118:133–147

    CAS  PubMed  Google Scholar 

  13. Hattar S, Kumar M, Park A et al (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497:326–349

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hattar S, Liao HW, Takao M et al (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hellner KA, Jensen W, Muller-Jensen A (1978) Videoprocessing pupillographic perimetry in hemianopsia (author's transl). Klin Monatsbl Augenheilkd 172:731–735

    CAS  PubMed  Google Scholar 

  16. Heywood CA, Nicholas JJ, Lemare C et al (1998) The effect of lesions to cortical areas V4 or AIT on pupillary responses to chromatic and achromatic stimuli in monkeys. Exp Brain Res 122:475–480

    Article  CAS  PubMed  Google Scholar 

  17. Inoue T, Kiribuchi T (1985) Cortical and subcortical pathways for pupillary reactions in rabbits. Jpn J Ophthalmol 29:63–70

    CAS  PubMed  Google Scholar 

  18. Ishikawa H, Onodera A, Asakawa K et al (2012) Effects of selective-wavelength block filters on pupillary light reflex under red and blue light stimuli. Jpn J Ophthalmol 56:181–186

    Article  PubMed  Google Scholar 

  19. Jindahra P, Petrie A, Plant GT (2009) Retrograde trans-synaptic retinal ganglion cell loss identified by optical coherence tomography. Brain 132:628–634

    Article  PubMed  Google Scholar 

  20. Jindahra P, Petrie A, Plant GT (2012) Thinning of the retinal nerve fibre layer in homonymous Quadrantanopia: further evidence for retrograde trans-synaptic degeneration in the human visual system. Neuro-Ophthalmology 36:79–84

    Article  Google Scholar 

  21. Jindahra P, Petrie A, Plant GT (2012) The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain 135:534–541

    Article  PubMed  Google Scholar 

  22. Kardon R, Anderson SC, Damarjian TG et al (2009) Chromatic pupil responses: preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex. Ophthalmology 116:1564–1573

    Article  PubMed  Google Scholar 

  23. Kardon RH (1992) Pupil perimetry. Curr Opin Ophthalmol 3:565–570

    Article  CAS  PubMed  Google Scholar 

  24. Keenleyside M, Barbur J, Pinney H (1988) Stimulus-specific pupillary responses in normal and hemianopic subjects. Perception 17:347

    Google Scholar 

  25. Loewenfeld IE (1993) The pupil: anatomy, physiology, and clinical applications. Iowa State University Press and Wayne State University Press

  26. Lucas RJ, Hattar S, Takao M et al (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–247

    Article  CAS  PubMed  Google Scholar 

  27. Mcdougal DH, Gamlin PD (2010) The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex. Vis Res 50:72–87

    Article  PubMed  PubMed Central  Google Scholar 

  28. Miller NR, Newman SA (1981) Transsynaptic degeneration. Arch Ophthalmol 99:1654

    Article  CAS  PubMed  Google Scholar 

  29. Panda S, Sato TK, Castrucci AM et al (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298:2213–2216

    Article  CAS  PubMed  Google Scholar 

  30. Papageorgiou E, Ticini LF, Hardiess G et al (2008) The pupillary light reflex pathway: cytoarchitectonic probabilistic maps in hemianopic patients. Neurology 70:956–963

    Article  CAS  PubMed  Google Scholar 

  31. Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415:493

    Article  CAS  PubMed  Google Scholar 

  32. Schmid R, Luedtke H, Wilhelm BJ et al (2005) Pupil campimetry in patients with visual field loss. Eur J Neurol 12:602–608

    Article  CAS  PubMed  Google Scholar 

  33. Skorkovská K, Maeda F, Kelbsch C et al (2014) Pupillary response to chromatic stimuli. Cesk Slov Neurol N 77(110):334–338

    Google Scholar 

  34. Skorkovska K, Wilhelm H, Ludtke H et al (2009) How sensitive is pupil campimetry in hemifield loss? Graefes Arch Clin Exp Ophthalmol 247:947–953

    Article  PubMed  Google Scholar 

  35. Steele GE, Weller RE (1993) Subcortical connections of subdivisions of inferior temporal cortex in squirrel monkeys. Vis Neurosci 10:563–583

    Article  CAS  PubMed  Google Scholar 

  36. Tanito M, Ohira A (2013) Hemianopic inner retinal thinning after stroke. Acta Ophthalmol 91:e237–e238

    Article  PubMed  Google Scholar 

  37. Walker CB (1913) Topical diagnostic value of the hemiopic pupillary reaction and the wilbrand hemianoptic prism phenomenon: with a new method of performing the latter. J Am Med Assoc 61:1152–1156

    Article  Google Scholar 

  38. Wernicke C (1883) Über hemianopische Pupillenreaktion. Fortschr Med 1:9–53

    Google Scholar 

  39. Wilhelm BJ, Wilhelm H, Moro S et al (2002) Pupil response components: studies in patients with Parinaud's syndrome. Brain 125:2296–2307

    Article  PubMed  Google Scholar 

  40. Wilhelm H, Kardon RH (1997) The pupillary light reflex pathway. Neuro-Ophthalmology 17:59–62

    Article  Google Scholar 

  41. Wilhelm H, Wilhelm B, Petersen D et al (1996) Relative afferent pupillary defects in patients with geniculate and retrogeniculate lesions. Neuro-Ophthalmology 16:219–224

    Article  Google Scholar 

  42. Yamashita T, Miki A, Iguchi Y et al (2012) Reduced retinal ganglion cell complex thickness in patients with posterior cerebral artery infarction detected using spectral-domain optical coherence tomography. Jpn J Ophthalmol 56:502–510

    Article  PubMed  Google Scholar 

  43. Yoshitomi T, Matsui T, Tanakadate A et al (1999) Comparison of threshold visual perimetry and objective pupil perimetry in clinical patients. J Neuroophthalmol 19:89–99

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Margaret Clouse for her help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Wilhelm.

Ethics declarations

Funding

The Egon Schumacher-Stiftung, Germany, a private foundation without commercial interest, provided financial support in the form of labor and material costs funding. The sponsor had no role in the design or conduct of this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the local institutional ethics committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeda, F., Kelbsch, C., Straßer, T. et al. Chromatic pupillography in hemianopia patients with homonymous visual field defects. Graefes Arch Clin Exp Ophthalmol 255, 1837–1842 (2017). https://doi.org/10.1007/s00417-017-3721-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3721-y

Keywords

Navigation