Skip to main content

Advertisement

Log in

Two-year visual outcome of ranibizumab in typical neovascular age-related macular degeneration and polypoidal choroidal vasculopathy

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the 2-year outcomes of intravitreal injections of ranibizumab in typical neovascular age-related macular degeneration (tAMD) and polypoidal choroidal vasculopathy (PCV). Factors associated with visual outcomes are examined.

Methods

We retrospectively reviewed medical records of 128 consecutive eyes with treatment-naïve subfoveal AMD treated with ranibizumab and followed for ≥24 months. The association between visual outcomes and single nucleotide polymorphisms (SNPs) in ARMS2 A69S and CFH I62V genes were examined.

Results

Fifty-eight eyes were diagnosed with tAMD and 70 eyes with PCV. In tAMD eyes, visual acuity (VA) improved at 3 months (P = 0.020) but returned to the baseline level at 6 months. Thereafter, VA was maintained until 24 months. In PCV eyes, VA significantly improved at 3 months (P = 0.015) and persisted at 12 months (P = 0.025), but the VA improvement dissipated by 24 months. With regard to genetic associations with VA and VA change, neither VA nor VA change showed significant associations with these SNPs at all time points in tAMD. In the PCV eyes, there were significant associations between ARMS2 A69S and VA at baseline and 1 year (P = 0.017 and P = 0.025, respectively). However, VA change showed no significant difference among these genotypes in PCV.

Conclusions

Intravitreal ranibizumab significantly improved the VA initially, but this improvement did not persist at 2 years post-treatment. In PCV, ARMS2 A69S polymorphism is associated with the baseline and 12-month VA, but is not associated with the visual prognosis at 24 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mitchell P, Smith W, Attebo K, Wang JJ (1995) Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study. Ophthalmology 102:1450–1460

    Article  CAS  PubMed  Google Scholar 

  2. Klein R, Klein BE, Tomany SC, Meuer SM, Huang GH (2002) Ten-year incidence and progression of age-related maculopathy: The Beaver Dam Eye Study. Ophthalmology 109:1767–1779

    Article  PubMed  Google Scholar 

  3. Meyer CH, Holz FG (2011) Preclinical aspects of anti-VEGF agents for the treatment of wet AMD: ranibizumab and bevacizumab. Eye (London) 25:661–672

    Article  CAS  Google Scholar 

  4. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355:1419–1431

    Article  CAS  PubMed  Google Scholar 

  5. Brown DM, Michels M, Kaiser PK, Heier JS, Sy JP, Ianchulev T (2009) Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology 116:57–65

    Article  PubMed  Google Scholar 

  6. Yannuzzi LA, Sorenson J, Spaide RF, Lipson B (1990) Idiopathic polypoidal choroidal vasculopathy (IPCV). Retina 10:1–8

    Article  CAS  PubMed  Google Scholar 

  7. Kokame GT, Yeung L, Lai JC (2010) Continuous anti-VEGF treatment with ranibizumab for polypoidal choroidal vasculopathy: 6-month results. Br J Ophthalmol 94:297–301

    Article  PubMed  Google Scholar 

  8. Rouvas AA, Papakostas TD, Ntouraki A, Douvali M, Vergados I, Ladas ID (2011) Photodynamic therapy, ranibizumab, and ranibizumab with photodynamic therapy for the treatment of polypoidal choroidal vasculopathy. Retina 31:464–474

    Article  CAS  PubMed  Google Scholar 

  9. Yamashiro K, Tomita K, Tsujikawa A, Nakata I, Akagi-Kurashige Y, Miyake M, Ooto S, Tamura H, Yoshimura N (2012) Factors associated with the response of age-related macular degeneration to intravitreal ranibizumab treatment. Am J Ophthalmol 154:125–136

    Article  CAS  PubMed  Google Scholar 

  10. Hikichi T, Higuchi M, Matsushita T, Kosaka S, Matsushita R, Takami K, Ohtsuka H, Kitamei H, Shioya S (2013) Results of 2 years of treatment with as-needed ranibizumab reinjection for polypoidal choroidal vasculopathy. Br J Ophthalmol 97:617–621

    Article  PubMed Central  PubMed  Google Scholar 

  11. Koh A, Lee WK, Chen LJ, Chen SJ, Hashad Y, Kim H, Lai TY, Pilz S, Ruamviboonsuk P, Tokaji E, Weisberger A, Lim TH (2012) EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy. Retina 32:1453–1464

    Article  CAS  PubMed  Google Scholar 

  12. Oishi A, Kojima H, Mandai M, Honda S, Matsuoka T, Oh H, Kita M, Nagai T, Fujihara M, Bessho N, Uenishi M, Kurimoto Y, Negi A (2013) Comparison of the effect of ranibizumab and verteporfin for polypoidal choroidal vasculopathy: 12-month LAPTOP study results. Am J Ophthalmol 156:644–651

    Article  CAS  PubMed  Google Scholar 

  13. Moorthy RS, Lyon AT, Rabb MF, Spaide RF, Yannuzzi LA, Jampol LM (1998) Idiopathic polypoidal choroidal vasculopathy of the macula. Ophthalmology 105:1380–1385

    Article  CAS  PubMed  Google Scholar 

  14. Cho M, Barbazetto IA, Freund KB (2009) Refractory neovascular age-related macular degeneration secondary to polypoidal choroidal vasculopathy. Am J Ophthalmol 148:70.e1–78.e1

    Article  Google Scholar 

  15. Stangos AN, Gandhi JS, Nair-Sahni J, Heimann H, Pournaras CJ, Harding SP (2010) Polypoidal choroidal vasculopathy masquerading as neovascular age-related macular degeneration refractory to ranibizumab. Am J Ophthalmol 150:666–673

    Article  CAS  PubMed  Google Scholar 

  16. Kondo N, Honda S, Kuno S, Negi A (2009) Coding variant I62V in the complement factor H gene is strongly associated with polypoidal choroidal vasculopathy. Ophthalmology 116:304–310

    Article  PubMed  Google Scholar 

  17. Gotoh N, Nakanishi H, Hayashi H, Yamada R, Otani A, Tsujikawa A, Yamashiro K, Tamura H, Saito M, Saito K, Iida T, Matsuda F, Yoshimura N (2009) ARMS2 (LOC387715) variants in Japanese patients with exudative age-related macular degeneration and polypoidal choroidal vasculopathy. Am J Ophthalmol 147:1037–1041, 1041.e1–1041.e2

    Article  CAS  PubMed  Google Scholar 

  18. Hayashi H, Yamashiro K, Gotoh N, Nakanishi H, Nakata I, Tsujikawa A, Otani A, Saito M, Iida T, Matsuo K, Tajima K, Yamada R, Yoshimura N (2010) CFH and ARMS2 variations in age-related macular degeneration, polypoidal choroidal vasculopathy, and retinal angiomatous proliferation. Invest Ophthalmol Vis Sci 51:5914–5919

    Article  PubMed  Google Scholar 

  19. Chen H, Liu K, Chen LJ, Hou P, Chen W, Pang CP (2012) Genetic associations in polypoidal choroidal vasculopathy: a systematic review and meta-analysis. Mol Vis 18:816–829

    PubMed Central  PubMed  Google Scholar 

  20. Hagstrom SA, Ying GS, Pauer GJ, Sturgill-Short GM, Huang J, Callanan DG, Kim IK, Klein ML, Maguire MG, Martin DF (2013) Pharmacogenetics for genes associated with age-related macular degeneration in the Comparison of AMD Treatments Trials (CATT). Ophthalmology 120:593–599

    Article  PubMed Central  PubMed  Google Scholar 

  21. Bessho H, Honda S, Kondo N, Negi A (2011) The association of age-related maculopathy susceptibility 2 polymorphisms with phenotype in typical neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Mol Vis 17:977–982

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Sakurada Y, Kubota T, Imasawa M, Mabuchi F, Tanabe N, Iijima H (2010) Association of LOC387715 A69S genotype with visual prognosis after photodynamic therapy for polypoidal choroidal vasculopathy. Retina 30:1616–1621

    Article  PubMed  Google Scholar 

  23. Abedi F, Wickremasinghe S, Richardson AJ, Islam AF, Guymer RH, Baird PN (2013) Genetic influences on the outcome of anti-vascular endothelial growth factor treatment in neovascular age-related macular degeneration. Ophthalmology 120:1641–1648

    Article  PubMed  Google Scholar 

  24. Teper SJ, Nowinska A, Pilat J, Palucha A, Wylegala E (2010) Involvement of genetic factors in the response to a variable-dosing ranibizumab treatment regimen for age-related macular degeneration. Mol Vis 16:2598–2604

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Tomita K, Tsujikawa A, Yamashiro K, Ooto S, Tamura H, Otani A, Nakayama Y, Yoshimura N (2012) Treatment of polypoidal choroidal vasculopathy with photodynamic therapy combined with intravitreal injections of ranibizumab. Am J Ophthalmol 153:68.e1–80.e1

    Article  Google Scholar 

  26. Tano Y, Ohji M (2010) EXTEND-I: safety and efficacy of ranibizumab in Japanese patients with subfoveal choroidal neovascularization secondary to age-related macular degeneration. Acta Ophthalmol 88:309–316

    Article  CAS  PubMed  Google Scholar 

  27. Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP, Schneider S (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355:1432–1444

    Article  CAS  PubMed  Google Scholar 

  28. Fung AE, Lalwani GA, Rosenfeld PJ, Dubovy SR, Michels S, Feuer WJ, Puliafito CA, Davis JL, Flynn HW Jr, Esquiabro M (2007) An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration. Am J Ophthalmol 143:566–583

    Article  CAS  PubMed  Google Scholar 

  29. Wong TY, Chakravarthy U, Klein R, Mitchell P, Zlateva G, Buggage R, Fahrbach K, Probst C, Sledge I (2008) The natural history and prognosis of neovascular age-related macular degeneration: a systematic review of the literature and meta-analysis. Ophthalmology 115:116–126

    Article  PubMed  Google Scholar 

  30. Shah AR, Del Priore LV (2009) Natural history of predominantly classic, minimally classic, and occult subgroups in exudative age-related macular degeneration. Ophthalmology 116:1901–1907

    Article  PubMed  Google Scholar 

  31. Takahashi M, Sato T, Kishi S (2010) Intravitreal bevacizumab for age-related macular degeneration with good visual acuity. Jpn J Ophthalmol 54:565–570

    Article  CAS  PubMed  Google Scholar 

  32. Ying GS, Huang J, Maguire MG, Jaffe GJ, Grunwald JE, Toth C, Daniel E, Klein M, Pieramici D, Wells J, Martin DF (2013) Baseline predictors for one-year visual outcomes with ranibizumab or bevacizumab for neovascular age-related macular degeneration. Ophthalmology 120:122–129

    Article  PubMed Central  PubMed  Google Scholar 

  33. Kang HM, Koh HJ (2013) Long-term visual outcome and prognostic factors after intravitreal ranibizumab injections for polypoidal choroidal vasculopathy. Am J Ophthalmol 156:652–660

    Article  PubMed  Google Scholar 

  34. Yang Z, Camp NJ, Sun H, Tong Z, Gibbs D, Cameron DJ, Chen H, Zhao Y, Pearson E, Li X, Chien J, Dewan A, Harmon J, Bernstein PS, Shridhar V, Zabriskie NA, Hoh J, Howes K, Zhang K (2006) A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science 314:992–993

    Article  CAS  PubMed  Google Scholar 

  35. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Klaver CC, Kliffen M, van Duijn CM, Hofman A, Cruts M, Grobbee DE, van Broeckhoven C, de Jong PT (1998) Genetic association of apolipoprotein E with age-related macular degeneration. Am J Hum Genet 63:200–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Churchill AJ, Carter JG, Lovell HC, Ramsden C, Turner SJ, Yeung A, Escardo J, Atan D (2006) VEGF polymorphisms are associated with neovascular age-related macular degeneration. Hum Mol Genet 15:2955–2961

    Article  CAS  PubMed  Google Scholar 

  38. Nakata I, Yamashiro K, Yamada R, Gotoh N, Nakanishi H, Hayashi H, Akagi-Kurashige Y, Tsujikawa A, Otani A, Saito M, Iida T, Oishi A, Matsuo K, Tajima K, Matsuda F, Yoshimura N (2012) Significance of C2/CFB variants in age-related macular degeneration and polypoidal choroidal vasculopathy in a Japanese population. Invest Ophthalmol Vis Sci 53:794–798

    Article  CAS  PubMed  Google Scholar 

  39. Despriet DD, van Duijn CM, Oostra BA, Uitterlinden AG, Hofman A, Wright AF, ten Brink JB, Bakker A, de Jong PT, Vingerling JR, Bergen AA, Klaver CC (2009) Complement component C3 and risk of age-related macular degeneration. Ophthalmology 116:474.e2–480.e2

    Article  Google Scholar 

  40. Sakurada Y, Kubota T, Mabuchi F, Imasawa M, Tanabe N, Iijima H (2008) Association of LOC387715 A69S with vitreous hemorrhage in polypoidal choroidal vasculopathy. Am J Ophthalmol 145:1058–1062

    Article  CAS  PubMed  Google Scholar 

  41. Park DH, Kim IT (2012) Association of ARMS2/HTRA1 variants with polypoidal choroidal vasculopathy phenotype in a Korean population. Jpn J Ophthalmol 56:60–67

    Article  CAS  PubMed  Google Scholar 

  42. Tsujikawa A, Ojima Y, Yamashiro K, Nakata I, Ooto S, Tamura H, Nakanishi H, Hayashi H, Otani A, Yoshimura N (2011) Association of lesion size and visual prognosis to polypoidal choroidal vasculopathy. Am J Ophthalmol 151:961.e1–972.e1

    Article  Google Scholar 

  43. Sakurada Y, Kubota T, Imasawa M, Mabuchi F, Tateno Y, Tanabe N, Iijima H (2011) Role of complement factor H I62V and age-related maculopathy susceptibility 2 A69S variants in the clinical expression of polypoidal choroidal vasculopathy. Ophthalmology 118:1402–1407

    PubMed  Google Scholar 

  44. Park DH, Kim IT (2012) LOC387715/HTRA1 variants and the response to combined photodynamic therapy with intravitreal bevacizumab for polypoidal choroidal vasculopathy. Retina 32:299–307

    Article  CAS  PubMed  Google Scholar 

  45. Boyer DS, Antoszyk AN, Awh CC, Bhisitkul RB, Shapiro H, Acharya NR (2007) Subgroup analysis of the MARINA study of ranibizumab in neovascular age-related macular degeneration. Ophthalmology 114:246–252

    Article  PubMed  Google Scholar 

  46. Kaiser PK, Brown DM, Zhang K, Hudson HL, Holz FG, Shapiro H, Schneider S, Acharya NR (2007) Ranibizumab for predominantly classic neovascular age-related macular degeneration: subgroup analysis of first-year ANCHOR results. Am J Ophthalmol 144:850–857

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported, in part, by the Japan Society for the Promotion of Science (JSPS, Tokyo, Japan, Grant-in-Aid for Scientific Research, no. 21592256) and the Japan National Society for the Prevention of Blindness (Tokyo, Japan).

Financial disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akitaka Tsujikawa.

Additional information

The authors have full control of all primary data, and they agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review their data upon request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hata, M., Tsujikawa, A., Miyake, M. et al. Two-year visual outcome of ranibizumab in typical neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol 253, 221–227 (2015). https://doi.org/10.1007/s00417-014-2688-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2688-1

Keywords

Navigation