Skip to main content
Log in

Proteomic analysis of the differences in orbital protein expression in thyroid orbitopathy

  • Oculoplastics and Orbit
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Thyroid orbitopathy (TO) is a multi-system inflammatory disease characterized by orbital congestion, ocular surface disorders, restrictive myopathy, and skin lesions. The molecular and cellular processes of pathogenic formation of TO orbital fat tissues are not fully understood. In this study, a comparative proteomic analysis was conducted to investigate the importance of some differential proteins of orbital fat tissues in TO.

Methods

The differential proteins were analyzed by comparing the two-dimensional gel electrophoresis (2-DE) maps of the orbital fat tissues of TO with those of normal orbital fat tissues. The 2-DE results were further verified by Western blot and immunohistochemistry.

Results

Fifteen up-regulated and two down-regulated proteins in TO orbital fat tissues in comparison with the control were exhibited by 2-DE maps. The over-expressed proteins including guanine nucleotide-binding protein, isocitrate dehydrogenase (IDH), annexin A2, heat shock protein 60 (HSP 60), calreticulin (CALR), protein disulfide-isomerase A3 (PDIA3), spectrin, superoxide dismutase (SOD), and transitional endoplasmic reticulum ATPase (TER ATPase) may contribute to increased thyroid-stimulating hormone receptor (TSHR) expression and cell proliferation. The proteomic data of specific proteins are consistent with those determined by Western blot and immunohistochemistry.

Conclusions

Comparison of orbital fat proteins from thyroid orbitopathy with age-matched controls shows significant differences in the proteome, and up-regulations of the specific proteins in orbital fat tissues from TO are associated with biochemical mechanisms or capacities against endoplasmic reticulum stress, mitochondria dysfunction, and cell proliferation as well as apoptosis in TO orbital fat tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TO:

Thyroid orbitopathy

2-DE:

Two-dimensional gel electrophoresis

TSHR:

Thyroid-stimulating hormone receptor

GPDH:

Glycerol-3-phosphate dehydrogenase

TER ATPase:

Transitional endoplasmic reticulum ATPase

CALR:

Calreticulin

PDIA3:

Protein disulfide-isomerase A3

HSP60:

Heat shock protein 60

IDH:

Isocitrate dehydrogenase

SOD:

Superoxide dismutase

References

  1. Bahn RS, Heufelder AE (1993) Pathogenesis of Graves’ ophthalmopathy. N Engl J Med 329:1468–1475

    Article  CAS  PubMed  Google Scholar 

  2. Char DH (1996) Thyroid eye disease. Br J Ophthalmol 80:922–926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Prabhakar BS, Bahn RS, Smith TJ (2003) Current perspective on the pathogenesis of Graves’ disease and ophthalmopathy. Endocr Rev 24:802–835

    Article  CAS  PubMed  Google Scholar 

  4. Weetman AP (1991) Thyroid-associated eye disease: Pathophysiology. Lancet 338:25–28

    Article  CAS  PubMed  Google Scholar 

  5. Kubota S, Gunji K, Stolarski C, Kennerdell JS, Wall JR (1998) Role of eye muscle antibody measurement in diagnosis of thyroid-associated ophthalmopathy: A laboratory update. Endocr Pract 4:127–132

    Article  CAS  PubMed  Google Scholar 

  6. Bahn RS, Dutton CM, Natt N, Joba W, Spitzweg C, Heufelder AE (1998) Thyrotropin receptor expression in Graves’ orbital adipose/connective tissues: Potential autoantigen in Graves’ ophthalmopathy. J Clin Endocr Metab 83:998–1002

    Article  CAS  PubMed  Google Scholar 

  7. Crisp MS, Lane C, Halliwell M, Wynford-Thomas D, Ludgate M (1997) Thyrotropin receptor transcripts in human adipose tissue. J Clin Endocrinol Metab 82:2003–2005

    CAS  PubMed  Google Scholar 

  8. Weetman AP, Cohen S, Gatter KC, Fells P, Shine B (1989) Immunohistochemical analysis of the retrobulbar tissues in Graves’ ophthalmopathy. Clin Exp Immunol 75:222–227

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Valyasevi RW, Erickson DZ, Harteneck DA, Dutton CM, Heufelder AE, Jyonouchi SC, Bahn RS (1999) Differentiation of human orbital preadipocyte fibroblasts induces expression of functional thyrotropin receptor. J Clin Endocr Metab 84:2557–2562

    Article  CAS  PubMed  Google Scholar 

  10. Cao HJ, Wang HS, Zhang Y, Lin HY, Phipps RP, Smith TJ (1998) Activation of human orbital fibroblasts through CD40 engagement results in a dramatic induction of hyaluronan synthesis and prostaglandin endoperoxide H synthase-2 expression — Insights into potential pathogenic mechanisms of thyroid-associated ophthalmopathy. J Biol Chem 273:29615–29625

    Article  CAS  PubMed  Google Scholar 

  11. Kahaly GJ, Bang H, Berg W, Dittmar M (2005) Alpha-fodrin as a putative autoantigen in Graves’ ophthalmopathy. Clin Exp Immunol 140:166–172

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Bednarczuk T, Stolarski C, Pawlik E, Slon M, Rowinski M, Kubota S, Hiromatsu Y, Bartoszewicz Z, Wall JR, Nauman J (1999) Autoantibodies reactive with extracellular matrix proteins in patients with thyroid-associated ophthalmopathy. Thyroid 9:289–295

    Article  CAS  PubMed  Google Scholar 

  13. De Bellis A, Sansone D, Coronella C, Conte M, Iorio S, Perrino S, Battaglia M, Bellastella G, Wall JR, Bellastella A, Bizzarro A (2005) Serum antibodies to collagen XIII: A further good marker of active Graves’ ophthalmopathy. Clin Endocrinol 62:24–29

    Google Scholar 

  14. Morshed SA, Latif R, Davies TF (2012) Delineating the autoimmune mechanisms in Graves’ disease. Immunol Res 54:191–203

    Article  CAS  PubMed  Google Scholar 

  15. Kumar S, Nadeem S, Stan MN, Coenen M, Bahn RS (2011) A stimulatory TSH receptor antibody enhances adipogenesis via phosphoinositide 3-kinase activation in orbital preadipocytes from patients with Graves’ ophthalmopathy. J Mol Endocrinol 46:155–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Bahn RS (2012) Autoimmunity and Graves’ disease. Clin Pharmacol Ther 91:577–579

    Article  CAS  PubMed  Google Scholar 

  17. Wu YJ, Chen HM, Wu TT, Wu JS, Chu RM, Juang RH (2006) Preparation of monoclonal antibody bank against whole water-soluble proteins from rapid-growing bamboo shoots. Proteomics 6:5898–5902

    Article  CAS  PubMed  Google Scholar 

  18. Su TR, Lin JJ, Chiu CC, Chen JY, Su JH, Cheng ZJ, Hwang WI, Huang HH, Wu YJ (2012) Proteomic investigation of anti-tumor activities exerted by sinularin against A2058 melanoma cells. Electrophoresis 33:1139–1152

    Article  CAS  PubMed  Google Scholar 

  19. Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11:155–168

    CAS  PubMed  Google Scholar 

  20. Laffitte BA, Repa JJ, Joseph SB, Wilpitz DC, Kast HR, Mangelsdorf DJ, Tontonoz P (2001) LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci U S A 98:507–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Yeh JI, Chinte U, Du SC (2008) Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism. Proc Natl Acad Sci U S A 105:3280–3285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hansen C, Heussel CP, Otto EA, Stover C, Beyer J, Kahaly G (1993) Retrobulbar adipocytes and humoral immunity in Graves’ ophthalmopathy. Horm Metab Res 25:618–622

    Article  CAS  PubMed  Google Scholar 

  23. Neumann S, Krause G, Claus M, Paschke R (2005) Structural determinants for g protein activation and selectivity in the second intracellular loop of the thyrotropin receptor. Endocrinology 146:477–485

    Article  CAS  PubMed  Google Scholar 

  24. Agretti P, De Marco G, De Servi M, Marcocci C, Vitti P, Pinchera A, Tonacchera M (2005) Evidence for protein and mRNA TSHr expression in fibroblasts from patients with thyroid-associated ophthalmopathy (TAO) after adipocytic differentiation. Eur J Endocrinol 152:777–784

    Article  CAS  PubMed  Google Scholar 

  25. Morshed SA, Ando T, Latif R, Davies TF (2010) Neutral antibodies to the TSH receptor are present in Graves’ disease and regulate selective signaling cascades. Endocrinology 151:5537–5549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gething MJ, Sambrook J (1990) Transport and assembly processes in the endoplasmic reticulum. Semin Cell Biol 1:65–72

    CAS  PubMed  Google Scholar 

  27. Hetzer M, Meyer HH, Walther TC, Bilbao-Cortes D, Warren G, Mattaj IW (2001) Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nat Cell Biol 3:1086–1091

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Camacho P (2004) Ca2 + −dependent redox modulation of SERCA 2b by ERp57. J Cell Biol 164:35–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hendershot LM (2004) The ER function BiP is a master regulator of ER function. Mt Sinai J Med 71:289–297

    PubMed  Google Scholar 

  30. So AY, de la Fuente E, Walter P, Shuman M, Bernales S (2009) The unfolded protein response during prostate cancer development. Cancer Metastasis Rev 28:219–223

    Article  CAS  PubMed  Google Scholar 

  31. Williams DB, Rutkevich LA, Cohen-Doyle MF, Brockmeier U (2010) Functional relationship between protein disulfide isomerase family members during the oxidative folding of human secretory proteins. Mol Biol Cell 21:3093–3105

    Article  PubMed Central  PubMed  Google Scholar 

  32. Gotoh T, Endo M, Oike Y (2011) Endoplasmic reticulum stress-related inflammation and cardiovascular diseases. Int J Inflam 2011:259462

    PubMed Central  PubMed  Google Scholar 

  33. Mahadevan NR, Rodvold J, Sepulveda H, Rossi S, Drew AF, Zanetti M (2011) Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells. Proc Natl Acad Sci U S A 108:6561–6566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Zarkovic M (2012) The role of oxidative stress on the pathogenesis of Graves’ disease. J Thyroid Res 2012:302537

    PubMed Central  PubMed  Google Scholar 

  35. Hartl FU, Hlodan R, Langer T (1994) Molecular chaperones in protein folding: The art of avoiding sticky situations. Trends Biochem Sci 19:20–25

    Article  CAS  PubMed  Google Scholar 

  36. Guimaraes AJ, Frases S, Gomez FJ, Zancope-Oliveira RM, Nosanchuk JD (2009) Monoclonal antibodies to heat shock protein 60 alter the pathogenesis of histoplasma capsulatum. Infect Immun 77:1357–1367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ghosh JC, Dohi T, Kang BH, Altieri DC (2008) Hsp60 Regulation of tumor cell apoptosis. J Biol Chem 283:5188–5194

    Article  CAS  PubMed  Google Scholar 

  38. Hondur A, Konuk O, Dincel AS, Bilgihan A, Unal M, Hasanreisoglu B (2008) Oxidative stress and antioxidant activity in orbital fibroadipose tissue in Graves’ ophthalmopathy. Curr Eye Res 33:421–427

    Article  CAS  PubMed  Google Scholar 

  39. Smith TJ, Padovani-Claudio DA, Lu Y, Raychaudhuri N, Fernando R, Atkins S, Gillespie EF, Gianoukakis AG, Miller BS, Gauger PG, Doherty GM, Douglas RS (2011) Fibroblasts expressing the thyrotropin receptor overarch thyroid and orbit in Graves’ disease. J Clin Endocrinol Metab 96:3827–3837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Leto TL, Fortugno-Erikson D, Barton D, Yang-Feng TL, Francke U, Harris AS, Morrow JS, Marchesi VT, Benz EJ Jr (1988) Comparison of nonerythroid alpha-spectrin genes reveals strict homology among diverse species. Mol Cell Biol 8:1–9

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Nakahara S, Raz A (2008) Biological modulation by lectins and their ligands in tumor progression and metastasis. Anticancer Agents Med Chem 8:22–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Metral S, Machnicka B, Bigot S, Colin Y, Dhermy D, Lecomte MC (2009) AlphaII-spectrin is critical for cell adhesion and cell cycle. J Biol Chem 284:2409–2418

    Article  CAS  PubMed  Google Scholar 

  43. Raz A, Nakahara S (2008) Biological modulation by lectins and their ligands in tumor progression and metastasis. Anticancer Agents Med Chem 8:22–36

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grant kmhk-96-029 from Kaohsiung Municipal Hsiao-kang Hospital.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Jen Wu or Cheng-Hsien Chang.

Additional information

Yu-Jen Wu and Cheng-Hsien Chang are contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 128 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, KC., Huang, HH., Hung, CT. et al. Proteomic analysis of the differences in orbital protein expression in thyroid orbitopathy. Graefes Arch Clin Exp Ophthalmol 251, 2777–2787 (2013). https://doi.org/10.1007/s00417-013-2446-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2446-9

Keywords

Navigation