Skip to main content
Log in

Motor function in multiple sclerosis assessed by navigated transcranial magnetic stimulation mapping

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Introduction

Impaired motor function is a major cause of disability in multiple sclerosis (MS), involving various neuroplasticity processes typically assessed by neuroimaging. This study aimed to determine whether navigated transcranial magnetic stimulation (nTMS) could also provide biomarkers of motor cortex plasticity in patients with MS (pwMS).

Methods

nTMS motor mapping was performed for hand and leg muscles bilaterally. nTMS variables included the amplitude and latency of motor evoked potentials (MEPs), corticospinal excitability measures, and the size of cortical motor maps (CMMs). Clinical assessment included disability (Expanded Disability Status Scale, EDSS), strength (MRC scale, pinch and grip), and dexterity (9-hole Pegboard Test).

Results

nTMS motor mapping was performed in 68 pwMS. PwMS with high disability (EDSS ≥ 3) had enlarged CMMs with less dense distribution of MEPs and various MEP parameter changes compared to pwMS with low disability (EDSS < 3). Patients with progressive MS had also various MEP parameter changes compared to pwMS with relapsing remitting form. MRC score correlated positively with MEP amplitude and negatively with MEP latency, pinch strength correlated negatively with CMM volume and dexterity with MEP latency.

Conclusions

This is the first study to perform 4-limb cortical motor mapping in pwMS using a dedicated nTMS procedure. By quantifying the cortical surface representation of a given muscle and the variability of MEP within this representation, nTMS can provide new biomarkers of motor function impairment in pwMS. Our study opens perspectives for the use of nTMS as an objective method for assessing pwMS disability in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data supporting the findings are available upon reasonable request.

References

  1. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517. https://doi.org/10.1016/S0140-6736(08)61620-7

    Article  CAS  PubMed  Google Scholar 

  2. da Chagas LS, Sandre PC, Ribeiro e Ribeiro NCA, Marcondes H, Oliveira Silva P, Savino W (2020) Environmental signals on microglial function during brain development neuroplasticity, and diseASE. Int J Mol Sci 21:2111. https://doi.org/10.3390/ijms21062111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li Q, Barres BA (2018) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18:225–242. https://doi.org/10.1038/nri.2017.125

    Article  CAS  PubMed  Google Scholar 

  4. Rocca MA, Colombo B, Falini A, Ghezzi A, Martinelli V, Scotti G et al (2005) Cortical adaptation in patients with MS: a cross-sectional functional MRI study of disease phenotypes. Lancet Neurol 4:618–626. https://doi.org/10.1016/S1474-4422(05)70171-X

    Article  PubMed  Google Scholar 

  5. Lefaucheur J-P (2010) Why image-guided navigation becomes essential in the practice of transcranial magnetic stimulation. Neurophysiol Clin 40:1–5. https://doi.org/10.1016/j.neucli.2009.10.004

    Article  PubMed  Google Scholar 

  6. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17:162–173. https://doi.org/10.1016/S1474-4422(17)30470-2

    Article  PubMed  Google Scholar 

  7. Krieg SM, Lioumis P, Mäkelä JP, Wilenius J, Karhu J, Hannula H et al (2017) Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report. Acta Neurochir (Wien) 159:1187–1195. https://doi.org/10.1007/s00701-017-3187-z

    Article  PubMed  Google Scholar 

  8. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S et al (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341. https://doi.org/10.1016/j.mri.2012.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pieper S, Halle M, Kikinis R (2004) 3D Slicer. In 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (IEEE Cat No 04EX821) 2:632–635. https://doi.org/10.1109/ISBI.2004.1398617

  10. Egger C, Opfer R, Wang C, Kepp T, Sormani MP, Spies L et al (2016) MRI FLAIR lesion segmentation in multiple sclerosis: Does automated segmentation hold up with manual annotation? Neuroimage Clin 13:264–270. https://doi.org/10.1016/j.nicl.2016.11.020

    Article  PubMed  PubMed Central  Google Scholar 

  11. Friston KJ, Ashburner J, Kiebel SJ, Nichols TE, Penny WD (2007) Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press. https://doi.org/10.1016/B978-0-12-372560-8.X5000-1

  12. Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L et al (2016) The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex 26:3508–3526. https://doi.org/10.1093/cercor/bhw157

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452

    Article  CAS  PubMed  Google Scholar 

  14. Meca-Lallana V, Brañas-Pampillón M, Higueras Y, Candeliere-Merlicco A, Aladro-Benito Y, Rodríguez-De la Fuente O et al (2019) Assessing fatigue in multiple sclerosis: psychometric properties of the five-item Modified Fatigue Impact Scale (MFIS-5). Mult Scler J Exp Transl Clin 5:2055217319887987. https://doi.org/10.1177/2055217319887987

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zigmond AS, Snaith RP (1983) The hospital anxiety and depression scale. Acta Psychiatr Scand 67:361–370

    Article  CAS  PubMed  Google Scholar 

  16. Smith A (1982) Symbol digit modalities test (SDMT). Manual (Revised). Western Psychological Services, Los Angeles

    Google Scholar 

  17. Llinàs-Reglà J, Vilalta-Franch J, López-Pousa S, Calvó-Perxas L, Torrents Rodas D, Garre-Olmo J (2017) The trail making test. Assessment 24:183–196. https://doi.org/10.1177/1073191115602552

    Article  PubMed  Google Scholar 

  18. Compston A (2010) Aids to the investigation of peripheral nerve injuries. Medical Research Council: Nerve Injuries Research Committee. His Majesty’s Stationery Office: 1942; pp. 48 (iii) and 74 figures and 7 diagrams; with aids to the examination of the peripheral nervous system. By Michael O’Brien for the Guarantors of Brain. Saunders Elsevier: 2010; pp. [8] 64 and 94 Figures. Brain 133:2838–2844. https://doi.org/10.1093/brain/awq270

    Article  PubMed  Google Scholar 

  19. Oldfield RC (1971) The assessment and analysis of handedness: the edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  20. Elias LJ, Bryden MP, Bulman-Fleming MB (1998) Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia 36:37–43. https://doi.org/10.1016/s0028-3932(97)00107-3

    Article  CAS  PubMed  Google Scholar 

  21. Mathiowetz V, Kashman N, Volland G, Weber K, Dowe M, Rogers S (1985) Grip and pinch strength: normative data for adults. Arch Phys Med Rehabil 66:69–74

    CAS  PubMed  Google Scholar 

  22. Truong CTL, Le HV, Kamauu AW, Holmen JR, Fillmore CL, Kobayashi MG et al (2021) Creating a real-world data, united states healthcare claims-based adaptation of Kurtzke functional systems scores for assessing multiple sclerosis severity and progression. Adv Ther 38:4786–4797. https://doi.org/10.1007/s12325-021-01858-9

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sayao A-L, Devonshire V, Tremlett H (2007) Longitudinal follow-up of “benign” multiple sclerosis at 20 years. Neurology 68:496–500. https://doi.org/10.1212/01.wnl.0000253185.03943.66

    Article  PubMed  Google Scholar 

  24. Thickbroom GW, Byrnes ML, Archer SA, Kermode AG, Mastaglia FL (2005) Corticomotor organisation and motor function in multiple sclerosis. J Neurol 252:765–771. https://doi.org/10.1007/s00415-005-0728-9

    Article  PubMed  Google Scholar 

  25. Chieffo R, Straffi L, Inuggi A, Coppi E, Moiola L, Martinelli V et al (2019) Changes in cortical motor outputs after a motor relapse of multiple sclerosis. Mult Scler J Exp Transl Clin 5:2055217319866480. https://doi.org/10.1177/2055217319866480

    Article  PubMed  PubMed Central  Google Scholar 

  26. Weiss Lucas C, Tursunova I, Neuschmelting V, Nettekoven C, Oros-Peusquens A-M, Stoffels G et al (2017) Functional MRI vs. navigated TMS to optimize M1 seed volume delineation for DTI tractography. A prospective study in patients with brain tumours adjacent to the corticospinal tract. Neuroimage Clin 13:297–309. https://doi.org/10.1016/j.nicl.2016.11.022

    Article  PubMed  Google Scholar 

  27. Lefaucheur J-P, Picht T (2016) The value of preoperative functional cortical mapping using navigated TMS. Neurophysiol Clin 46:125–133. https://doi.org/10.1016/j.neucli.2016.05.001

    Article  PubMed  Google Scholar 

  28. Kraus D, Gharabaghi A (2015) Projecting navigated TMS sites on the Gyral anatomy decreases inter-subject variability of cortical motor maps. Brain Stimul 8:831–837. https://doi.org/10.1016/j.brs.2015.03.006

    Article  PubMed  Google Scholar 

  29. Julkunen P (2014) Methods for estimating cortical motor representation size and location in navigated transcranial magnetic stimulation. J Neurosci Methods 232:125–133. https://doi.org/10.1016/j.jneumeth.2014.05.020

    Article  PubMed  Google Scholar 

  30. Rocca MA, Filippi M (2017) Functional reorganization is a maladaptive response to injury–YES. Mult Scler 23:191–193. https://doi.org/10.1177/1352458516667242

    Article  PubMed  Google Scholar 

  31. Filippi M, Agosta F (2009) Magnetic resonance techniques to quantify tissue damage, tissue repair, and functional cortical reorganization in multiple sclerosis. Prog Brain Res 175:465–482. https://doi.org/10.1016/S0079-6123(09)17531-3

    Article  CAS  PubMed  Google Scholar 

  32. Laura DG, Silvia T, Nikolaos P, Patrizia P (2018) The role of fMRI in the Assessment Of Neuroplasticity in MS: a systematic review. Neural Plast 2018:3419871. https://doi.org/10.1155/2018/3419871

    Article  PubMed  PubMed Central  Google Scholar 

  33. Filippi M, Preziosa P, Rocca MA (2019) Brain mapping in multiple sclerosis: lessons learned about the human brain. Neuroimage 190:32–45. https://doi.org/10.1016/j.neuroimage.2017.09.021

    Article  PubMed  Google Scholar 

  34. Tavazzi E, Cazzoli M, Pirastru A, Blasi V, Rovaris M, Bergsland N et al (2021) Neuroplasticity and motor rehabilitation in multiple sclerosis: a systematic review on MRI markers of functional and structural changes. Front Neurosci 15:707675. https://doi.org/10.3389/fnins.2021.707675

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mezzapesa DM, Rocca MA, Rodegher M, Comi G, Filippi M (2008) Functional cortical changes of the sensorimotor network are associated with clinical recovery in multiple sclerosis. Hum Brain Mapp 29:562–573. https://doi.org/10.1002/hbm.20418

    Article  PubMed  Google Scholar 

  36. Enzinger C, Pinter D, Rocca MA, De Luca J, Sastre-Garriga J, Audoin B et al (2016) Longitudinal fMRI studies: exploring brain plasticity and repair in MS. Mult Scler 22:269–278. https://doi.org/10.1177/1352458515619781

    Article  CAS  PubMed  Google Scholar 

  37. Stampanoni Bassi M, Mori F, Buttari F, Marfia GA, Sancesario A, Centonze D et al (2017) Neurophysiology of synaptic functioning in multiple sclerosis. Clin Neurophysiol 128:1148–1157. https://doi.org/10.1016/j.clinph.2017.04.006

    Article  PubMed  Google Scholar 

  38. Lenzi D, Conte A, Mainero C, Frasca V, Fubelli F, Totaro P et al (2007) Effect of corpus callosum damage on ipsilateral motor activation in patients with multiple sclerosis: a functional and anatomical study. Hum Brain Mapp 28:636–644. https://doi.org/10.1002/hbm.20305

    Article  PubMed  Google Scholar 

  39. Kiers L, Cros D, Chiappa KH, Fang J (1993) Variability of motor potentials evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 89:415–423. https://doi.org/10.1016/0168-5597(93)90115-6

    Article  CAS  PubMed  Google Scholar 

  40. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee Clin Neurophysiol 126:1071–1107. https://doi.org/10.1016/j.clinph.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  41. Reijonen J, Säisänen L, Könönen M, Mohammadi A, Julkunen P (2020) The effect of coil placement and orientation on the assessment of focal excitability in motor mapping with navigated transcranial magnetic stimulation. J Neurosci Methods 331:108521. https://doi.org/10.1016/j.jneumeth.2019.108521

    Article  PubMed  Google Scholar 

  42. Opitz A, Legon W, Rowlands A, Bickel WK, Paulus W, Tyler WJ (2013) Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. Neuroimage 81:253–264. https://doi.org/10.1016/j.neuroimage.2013.04.067

    Article  PubMed  Google Scholar 

  43. Bergmann TO, Mölle M, Schmidt MA, Lindner C, Marshall L, Born J et al (2012) EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation. J Neurosci 32:243–253. https://doi.org/10.1523/JNEUROSCI.4792-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Keil J, Timm J, Sanmiguel I, Schulz H, Obleser J, Schönwiesner M (2014) Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials. J Neurophysiol 111:513–519. https://doi.org/10.1152/jn.00387.2013

    Article  PubMed  Google Scholar 

  45. de Goede AA, van Putten MJAM (2019) Infraslow activity as a potential modulator of corticomotor excitability. J Neurophysiol 122:325–335. https://doi.org/10.1152/jn.00663.2018

    Article  PubMed  Google Scholar 

  46. Potter-Baker KA, Lin Y-L, Machado AG, Conforto AB, Cunningham DA, Sankarasubramanian V et al (2018) Variability of motor evoked potentials in stroke explained by corticospinal pathway integrity. Brain Stimul 11:929–931. https://doi.org/10.1016/j.brs.2018.03.004

    Article  PubMed  Google Scholar 

  47. Sollmann N, Bulubas L, Tanigawa N, Zimmer C, Meyer B, Krieg SM (2017) The variability of motor evoked potential latencies in neurosurgical motor mapping by preoperative navigated transcranial magnetic stimulation. BMC Neurosci 18:5. https://doi.org/10.1186/s12868-016-0321-4

    Article  PubMed  PubMed Central  Google Scholar 

  48. Picht T, Strack V, Schulz J, Zdunczyk A, Frey D, Schmidt S et al (2012) Assessing the functional status of the motor system in brain tumor patients using transcranial magnetic stimulation. Acta Neurochir (Wien) 154:2075–2081. https://doi.org/10.1007/s00701-012-1494-y

    Article  PubMed  Google Scholar 

  49. Britton TC, Meyer BU, Benecke R (1991) Variability of cortically evoked motor responses in multiple sclerosis. Electroencephalogr Clin Neurophysiol 81:186–194. https://doi.org/10.1016/0168-5597(91)90071-5

    Article  CAS  PubMed  Google Scholar 

  50. Thickbroom GW, Byrnes ML, Mastaglia FL (1999) A model of the effect of MEP amplitude variation on the accuracy of TMS mapping. Clin Neurophysiol 110:941–943. https://doi.org/10.1016/s1388-2457(98)00080-7

    Article  CAS  PubMed  Google Scholar 

  51. Simpson M, Macdonell R (2015) The use of transcranial magnetic stimulation in diagnosis, prognostication and treatment evaluation in multiple sclerosis. Mult Scler Relat Disord 4:430–436. https://doi.org/10.1016/j.msard.2015.06.014

    Article  PubMed  Google Scholar 

  52. Snow NJ, Wadden KP, Chaves AR, Ploughman M (2019) Transcranial magnetic stimulation as a potential biomarker in multiple sclerosis: a systematic review with recommendations for future research. Neural Plast 2019:6430596. https://doi.org/10.1155/2019/6430596

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vucic S, Stanley Chen K-H, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V et al (2023) Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 150:131–175. https://doi.org/10.1016/j.clinph.2023.03.010

    Article  PubMed  Google Scholar 

  54. Lefaucheur J-P, Drouot X, Ménard-Lefaucheur I, Keravel Y, Nguyen JP (2006) Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology 67:1568–1574. https://doi.org/10.1212/01.wnl.0000242731.10074.3c

    Article  CAS  PubMed  Google Scholar 

  55. Krieg SM, Shiban E, Buchmann N, Gempt J, Foerschler A, Meyer B et al (2012) Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. J Neurosurg 116:994–1001. https://doi.org/10.3171/2011.12.JNS111524

    Article  PubMed  Google Scholar 

  56. Tarapore PE, Picht T, Bulubas L, Shin Y, Kulchytska N, Meyer B et al (2016) Safety and tolerability of navigated TMS for preoperative mapping in neurosurgical patients. Clin Neurophysiol 127:1895–1900. https://doi.org/10.1016/j.clinph.2015.11.042

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Observatoire Français de la Sclérose en Plaques (OFSEP, http://www.ofsep.org/fr/), which is supported by a grant provided by the French government and administered by the Agence Nationale de la Recherche, within the framework of the ‘Investments for the Future’ programme (reference ANR‐10‐COHO‐002), the Eugène Devic EDMUS Foundation against Multiple Sclerosis and the ARSEP Foundation.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Benjamin Bardel: conceptualization of the study, main contribution to data collection and analyses, acquisition of neurophysiological data, programming, statistical analysis, drafted the manuscript; Alain Créange: main contribution to patient recruitment, data collection, interpretation of data, revision of the manuscript; Nathalie Bonardet, Mickael Zedet, Abir Wahab: contribution to patient recruitment and data collection; Blanche Bapst: contribution to data collection and analyses; Samar Ayache: main contribution to concept and design of study; Jean-Pascal Lefaucheur: supervision of the study, validation of results, supervision of writing the article, revising the manuscript critically for important intellectual content.

Corresponding author

Correspondence to Benjamin Bardel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1596 KB)

Supplementary file2 (DOCX 51 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardel, B., Créange, A., Bonardet, N. et al. Motor function in multiple sclerosis assessed by navigated transcranial magnetic stimulation mapping. J Neurol (2024). https://doi.org/10.1007/s00415-024-12398-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00415-024-12398-x

Keywords

Navigation