Skip to main content
Log in

Thalamic nuclei volume partially mediates the effects of aerobic capacity on fatigue in people with multiple sclerosis

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Fatigue is frequent in people with multiple sclerosis (pwMS) impacting physical and cognitive functions. Lower aerobic capacity and regional thalamic volume may be involved in the pathophysiology of fatigue in pwMS.

Objectives

To identify associations between thalamic nuclei volumes, aerobic capacity and fatigue and to investigate whether the influence of aerobic capacity on fatigue in pwMS is mediated by thalamic integrity.

Methods

Eighty-three pwMS underwent a clinical evaluation with assessment of fatigue (Modified Fatigue Impact Scale [MFIS]), including physical (pMFIS) and cognitive (cMFIS) components, and peak of oxygen uptake (VO2peak). PwMS and 63 sex- and age-matched healthy controls (HC) underwent a 3 T brain MRI to quantify volume of the whole thalamus and its nuclei.

Results

Compared to HC, pwMS showed higher global MFIS, pMFIS and cMFIS scores, and lower VO2peak and thalamic volumes (p < 0.001). In pwMS, higher VO2peak was significantly associated with lower MFIS and pMFIS scores (r value = − 0.326 and − 0.356; pFDR ≤ 0.046) and higher laterodorsal thalamic nucleus (Dor) cluster volume (r value = 0.300; pFDR = 0.047). Moreover, lower Dor thalamic cluster volume was significantly associated with higher MFIS, pMFIS and cMFIS scores (r value range = − 0.305; − 0.293; pFDR ≤ 0.049). The volume of Dor thalamic cluster partially mediated the positive effects of VO2peak on both MFIS and cMFIS, with relative indirect effects of 21% and 32% respectively. No mediation was found for pMFIS.

Conclusions

Higher VO2peak is associated with lower fatigue in pwMS, likely acting on Dor thalamic cluster volume integrity. Such an effect might be different according to the type of fatigue (cognitive or physical).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Marchesi O et al (2022) Current perspectives on the diagnosis and management of fatigue in multiple sclerosis. Expert Rev Neurother 22(8):681–693

    Article  CAS  PubMed  Google Scholar 

  2. Leocani L, Colombo B, Comi G (2008) Physiopathology of fatigue in multiple sclerosis. Neurol Sci 29(Suppl 2):S241–S243

    Article  PubMed  Google Scholar 

  3. Capone F et al (2020) Fatigue in multiple sclerosis: the role of thalamus. Mult Scler 26(1):6–16

    Article  PubMed  Google Scholar 

  4. Kaya Aygünoğlu S et al (2015) Correlation of fatigue with depression, disability level and quality of life in patients with multiple sclerosis. Noro Psikiyatr Ars 52(3):247–251

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vaughn CB et al (2020) Fatigue at enrollment predicts EDSS worsening in the New York State multiple sclerosis consortium. Mult Scler 26(1):99–108

    Article  PubMed  Google Scholar 

  6. Andreasen AK et al (2010) Fatigue and processing speed are related in multiple sclerosis. Eur J Neurol 17(2):212–218

    Article  CAS  PubMed  Google Scholar 

  7. Mackay L et al (2021) Predictors of cognitive fatigue and fatigability in multiple sclerosis. Mult Scler Relat Disord 56:103316

    Article  PubMed  Google Scholar 

  8. van Geest Q et al (2018) Information processing speed in multiple sclerosis: Relevance of default mode network dynamics. Neuroimage Clin 19:507–515

    Article  PubMed  PubMed Central  Google Scholar 

  9. Calabrese M et al (2010) Basal ganglia and frontal/parietal cortical atrophy is associated with fatigue in relapsing-remitting multiple sclerosis. Mult Scler 16(10):1220–1228

    Article  PubMed  Google Scholar 

  10. Bernitsas E et al (2017) Structural and neuronal integrity measures of fatigue severity in multiple sclerosis. Brain Sci. https://doi.org/10.3390/brainsci7080102

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li Y et al (2022) Alterations of thalamic nuclei volumes and the intrinsic thalamic structural network in patients with multiple sclerosis-related fatigue. Brain Sci. https://doi.org/10.3390/brainsci12111538

    Article  PubMed  PubMed Central  Google Scholar 

  12. Preziosa P et al (2023) Structural and functional magnetic resonance imaging correlates of fatigue and dual-task performance in progressive multiple sclerosis. J Neurol 270(3):1543–1563

    Article  CAS  PubMed  Google Scholar 

  13. Hidalgo de la Cruz M et al (2018) Abnormal functional connectivity of thalamic sub-regions contributes to fatigue in multiple sclerosis. Mult Scler 24(9):1183–1195

    Article  PubMed  Google Scholar 

  14. Strasser B, Burtscher M (2018) Survival of the fittest: VO(2)max, a key predictor of longevity? Front Biosci (Landmark Ed) 23(8):1505–1516

    Article  PubMed  Google Scholar 

  15. Rooney S et al (2019) Is fatigue associated with aerobic capacity and muscle strength in people with multiple sclerosis: a systematic review and meta-analysis. Arch Phys Med Rehabil 100(11):2193–2204

    Article  PubMed  Google Scholar 

  16. Mackay CP, Kuys SS, Brauer SG (2017) The effect of aerobic exercise on brain-derived neurotrophic factor in people with neurological disorders: a systematic review and meta-analysis. Neural Plast 2017:4716197

    Article  PubMed  PubMed Central  Google Scholar 

  17. Anderson T, Berry NT, Wideman L (2019) Exercise and the hypothalamic–pituitary–adrenal axis: a special focus on acute cortisol and growth hormone responses. Curr Opin Endocrine Metab Res 9:74–77

    Article  Google Scholar 

  18. Heine M et al (2017) Does aerobic training alleviate fatigue and improve societal participation in patients with multiple sclerosis? A randomized controlled trial. Mult Scler 23(11):1517–1526

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zong B et al (2023) Mechanisms underlying the beneficial effects of physical exercise on multiple sclerosis: focus on immune cells. Front Immunol 14:1260663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sandroff BM et al (2022) Thalamic atrophy moderates associations among aerobic fitness, cognitive processing speed, and walking endurance in persons with multiple sclerosis. J Neurol 269(10):5531–5540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petkus AJ et al (2021) Thalamic volume mediates associations between cardiorespiratory fitness (VO(2)max) and cognition in Parkinson’s disease. Parkinsonism Relat Disord. https://doi.org/10.1016/j.parkreldis.2021.03.019

    Article  PubMed  PubMed Central  Google Scholar 

  22. Motl RW et al (2015) Cardiorespiratory fitness and its association with thalamic, hippocampal, and basal ganglia volumes in multiple sclerosis. Neuroimage Clin 7:661–666

    Article  PubMed  PubMed Central  Google Scholar 

  23. Motl RW et al (2021) Do subcortical gray matter volumes and aerobic capacity account for cognitive-motor coupling in multiple sclerosis? Mult Scler 27(3):401–409

    Article  PubMed  Google Scholar 

  24. Tlamsa AP, Brumberg JC (2010) Organization and morphology of thalamocortical neurons of mouse ventral lateral thalamus. Somatosens Mot Res 27(1):34–43

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ouhaz Z, Fleming H, Mitchell AS (2018) Cognitive functions and neurodevelopmental disorders involving the prefrontal cortex and Mediodorsal thalamus. Front Neurosci. https://doi.org/10.3389/fnins.2018.00033

    Article  PubMed  PubMed Central  Google Scholar 

  26. Homman-Ludiye J, Bourne JA (2019) The medial pulvinar: function, origin and association with neurodevelopmental disorders. J Anat 235(3):507–520

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nelson AJD (2021) The anterior thalamic nuclei and cognition: A role beyond space? Neurosci Biobehav Rev. https://doi.org/10.1016/j.neubiorev.2021.02.047

    Article  PubMed  PubMed Central  Google Scholar 

  28. Motl RW et al (2017) Exercise in patients with multiple sclerosis. Lancet Neurol 16(10):848–856

    Article  PubMed  Google Scholar 

  29. Morozumi T et al (2023) Influence of cardiorespiratory fitness and MRI measures of neuroinflammation on hippocampal volume in multiple sclerosis. J Neurol Neurosurg Psychiatry 95(1):29–36

    Article  PubMed  Google Scholar 

  30. Tari AR et al (2019) Are the neuroprotective effects of exercise training systemically mediated? Prog Cardiovasc Dis 62(2):94–101

    Article  PubMed  Google Scholar 

  31. Fisk JD et al (1994) Measuring the functional impact of fatigue: initial validation of the fatigue impact scale. Clin Infect Dis 18(Suppl 1):S79-83

    Article  MathSciNet  PubMed  Google Scholar 

  32. Marchesi O et al (2020) Fatigue in multiple sclerosis patients with different clinical phenotypes: a clinical and magnetic resonance imaging study. Eur J Neurol 27(12):2549–2560

    Article  CAS  PubMed  Google Scholar 

  33. Fisk JD et al (1994) The impact of fatigue on patients with multiple sclerosis. Can J Neurol Sci 21(1):9–14

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  34. Herdy AH et al (2016) Cardiopulmonary exercise test: background, applicability and interpretation. Arq Bras Cardiol. https://doi.org/10.5935/abc.20160171

    Article  PubMed  PubMed Central  Google Scholar 

  35. van den Akker LE et al (2015) Feasibility and safety of cardiopulmonary exercise testing in multiple sclerosis: a systematic review. Arch Phys Med Rehabil 96(11):2055–2066

    Article  PubMed  Google Scholar 

  36. Langeskov-Christensen M et al (2014) Validity and reliability of VO2-max measurements in persons with multiple sclerosis. J Neurol Sci 342(1–2):79–87

    Article  PubMed  Google Scholar 

  37. Valverde S et al (2017) Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. Neuroimage 155:159–168

    Article  PubMed  Google Scholar 

  38. Iglesias JE et al (2018) A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage 183(1095–9572):314–326

    Article  PubMed  Google Scholar 

  39. Weeland CJ et al (2022) The thalamus and its subnuclei—a gateway to obsessive-compulsive disorder. Transl Psychiatry 12(1):70

    Article  PubMed  PubMed Central  Google Scholar 

  40. Field A (2018) Discovering statistics using IBM SPSS statistics, 5th edn. SAGE Publications, London, p 1375

    Google Scholar 

  41. Hair JF et al (2021) Mediation analysis. In: Hair JF et al (eds) Partial least squares structural equation modeling (PLS-SEM) using r: a workbook. Springer International Publishing, Cham, pp 139–153

    Chapter  Google Scholar 

  42. Moore H et al (2022) Fatigue in multiple sclerosis: a UK MS-register based study. Mult Scler Relat Disord 64:103954

    Article  PubMed  Google Scholar 

  43. Apollonatou V et al (2023) Cardiopulmonary exercise testing in people with minimally impaired multiple sclerosis. Mult Scler Relat Disord 79:105016

    Article  PubMed  Google Scholar 

  44. Langeskov-Christensen M et al (2015) Aerobic capacity in persons with multiple sclerosis: a systematic review and meta-analysis. Sports Med 45(6):905–923

    Article  PubMed  Google Scholar 

  45. Meijboom R et al (2023) Patterns of brain atrophy in recently-diagnosed relapsing-remitting multiple sclerosis. PLoS One 18(7):e0288967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rocca MA et al (2010) Thalamic damage and long-term progression of disability in multiple sclerosis. Radiology 257(2):463–469

    Article  PubMed  Google Scholar 

  47. Bezdudnaya T, Keller A (2008) Laterodorsal nucleus of the thalamus: a processor of somatosensory inputs. J Comp Neurol 507(6):1979–1989

    Article  PubMed  PubMed Central  Google Scholar 

  48. Perry BAL, Mitchell AS (2019) Considering the evidence for anterior and Laterodorsal thalamic nuclei as higher order relays to cortex. Front Mol Neurosci 12:167

    Article  PubMed  PubMed Central  Google Scholar 

  49. Romanò F et al (2023) Abnormal thalamic functional connectivity correlates with cardiorespiratory fitness and physical activity in progressive multiple sclerosis. J Neurol 270(6):3213–3224

    Article  PubMed  Google Scholar 

  50. Chaddock-Heyman L et al (2014) Aerobic fitness is associated with greater white matter integrity in children. Front Hum Neurosci 8:584

    Article  PubMed  PubMed Central  Google Scholar 

  51. Colcombe SJ et al (2006) Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci 61(11):1166–1170

    Article  PubMed  Google Scholar 

  52. Vakhrusheva J et al (2016) Aerobic exercise in people with schizophrenia: neural and neurocognitive benefits. Curr Behav Neurosci Rep 3(2):165–175

    Article  PubMed  PubMed Central  Google Scholar 

  53. Manjaly ZM et al (2019) Pathophysiological and cognitive mechanisms of fatigue in multiple sclerosis. J Neurol Neurosurg Psychiatry 90(6):642–651

    Article  PubMed  Google Scholar 

  54. Heesen C et al (2006) Fatigue in multiple sclerosis: an example of cytokine mediated sickness behaviour? J Neurol Neurosurg Psychiatry 77(1):34–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Consorti A, Di Marco I, Sansevero G (2021) Physical exercise modulates brain physiology through a network of long- and short-range cellular interactions. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2021.710303

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study has been supported by grant from Italian Ministry of Health (GR-2019–12369599).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Filippi.

Ethics declarations

Conflicts of interest

M. Albergoni has nothing to disclose; E. Pagani has nothing to disclose; P. Preziosa received speaker honoraria from Roche, Biogen, Novartis, Merck Serono, Bristol Myers Squibb, Genzyme, Horizon and Sanofi, he has received research support from Italian Ministry of Health and Fondazione Italiana Sclerosi Multipla; A. Meani has nothing to disclose; M.A. Rocca received consulting fees from Biogen, Bristol Myers Squibb, Eli Lilly, Janssen, Roche; and speaker honoraria from AstraZaneca, Biogen, Bristol Myers Squibb, Bromatech, Celgene, Genzyme, Horizon Therapeutics Italy, Merck Serono SpA, Novartis, Roche, Sanofi and Teva. She receives research support from the MS Society of Canada, the Italian Ministry of Health, the Italian Ministry of University and Research, and Fondazione Italiana Sclerosi Multipla. She is Associate Editor for Multiple Sclerosis and Related Disorders. M. Filippi is Editor-in-Chief of the Journal of Neurology, Associate Editor of Human Brain Mapping, Neurological Sciences, and Radiology; received compensation for consulting services from Alexion, Almirall, Biogen, Merck, Novartis, Roche, Sanofi; speaking activities from Bayer, Biogen, Celgene, Chiesi Italia SpA, Eli Lilly, Genzyme, Janssen, Merck-Serono, Neopharmed Gentili, Novartis, Novo Nordisk, Roche, Sanofi, Takeda, and TEVA; participation in Advisory Boards for Alexion, Biogen, Bristol-Myers Squibb, Merck, Novartis, Roche, Sanofi, Sanofi-Aventis, Sanofi-Genzyme, Takeda; scientific direction of educational events for Biogen, Merck, Roche, Celgene, Bristol-Myers Squibb, Lilly, Novartis, Sanofi-Genzyme; he receives research support from Biogen Idec, Merck-Serono, Novartis, Roche, the Italian Ministry of Health, the Italian Ministry of University and Research, and Fondazione Italiana Sclerosi Multipla.

Ethical approval

Approval was received from the institutional ethical standards committee on human experimentation of IRCCS Ospedale San Raffaele (Protocol number 59/INT/2015). Written informed consent was obtained from all subjects prior to study participation according to the Declaration of Helsinki.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albergoni, M., Pagani, E., Preziosa, P. et al. Thalamic nuclei volume partially mediates the effects of aerobic capacity on fatigue in people with multiple sclerosis. J Neurol (2024). https://doi.org/10.1007/s00415-024-12277-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00415-024-12277-5

Keywords

Navigation