Skip to main content

Advertisement

Log in

An exploratory study on the association between blood-based biomarkers and subacute neurometabolic changes following mild traumatic brain injury

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background and objectives

Blood-based biomarkers and advanced neuroimaging modalities such as magnetic resonance spectroscopy (MRS) or diffusion tensor imaging (DTI) have enhanced our understanding of the pathophysiology of mild traumatic brain injury (mTBI). However, there is limited published data on how blood biomarkers relate to neuroimaging biomarkers post-mTBI.

Methods

To investigate this, 30 patients with mTBI and 21 healthy controls were enrolled. Data was collected at two timepoints postinjury: acute, < 24 h, (blood) and subacute, four-to-six weeks, (blood and imaging). Interleukin (IL) 6 and 10 (inflammation), free thiols (systemic oxidative stress) and neurofilament light (NF-L) (axonal injury) were quantified in plasma. The neurometabolites total N-acetyl aspartate (tNAA) (neuronal energetics), Myo-Inositol (Ins) and total Choline (tCh) (inflammation) and, Glutathione (GSH, oxidative stress) were quantified using MRS.

Results

Concentrations of IL-6 and IL-10 were significantly elevated in the acute phase post-mTBI, while NF-L was elevated only in the subacute phase. Total NAA was lowered in patients with mTBI, although this difference was only nominally significant (uncorrected P < 0.05). Within the patient group, acute IL-6 and subacute tNAA levels were negatively associated (r =  − 0.46, uncorrected-P = 0.01), albeit not at a threshold corrected for multiple testing (corrected-P = 0.17). When age was added as a covariate a significant increase in correlation magnitude was observed (ρ =  − 0.54, corrected-P = 0.03).

Conclusion

This study demonstrates potential associations between the intensity of the inflammatory response in the acute phase post-mTBI and neurometabolic perturbations in the subacute phase. Future studies should assess the longitudinal dynamics of blood-based and imaging biomarkers after injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on reasonable request to the corresponding author.

References

  1. Maas AIR, Menon DK, Adelson D et al (2017) The lancet neurology commission traumatic brain injury: integrated approaches to improve prevention, clinical care, and research executive summary. Lancet Neurol 16:987–1048

    Article  PubMed  Google Scholar 

  2. van der Naalt J, Timmerman ME, de Koning ME et al (2017) Early predictors of outcome after mild traumatic brain injury (UPFRONT): an observational cohort study. Lancet Neurol. https://doi.org/10.1016/S1474-4422(17)30117-5

    Article  PubMed  Google Scholar 

  3. Tang-Schomer MD, Johnson VE, Baas PW et al (2012) Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp Neurol. https://doi.org/10.1016/j.expneurol.2011.10.030

    Article  PubMed  Google Scholar 

  4. Adams JH, Doyle D, Ford I et al (1989) Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology. https://doi.org/10.1111/j.1365-2559.1989.tb03040.x

    Article  PubMed  Google Scholar 

  5. Giza CC, Hovda DA (2014) The new neurometabolic cascade of concussion. Neurosurgery. https://doi.org/10.1227/NEU.0000000000000505

    Article  PubMed  Google Scholar 

  6. Shenton ME, Hamoda HM, Schneiderman JS et al (2012) A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav 6:137–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Farragher CD, Ku Y, Powers JE (2022) The potential role of neurofilament light in mild traumatic brain injury diagnosis: a systematic review. Cureus. https://doi.org/10.7759/cureus.31301

    Article  PubMed  PubMed Central  Google Scholar 

  8. Teunissen CE, Khalil M (2012) Neurofilaments as biomarkers in multiple sclerosis. Multiple Sclerosis J 18:552–556

    Article  CAS  Google Scholar 

  9. Visser K, Koggel M, Blaauw J et al (2022) Blood-based biomarkers of inflammation in mild traumatic brain injury: a systematic review. Neurosci Biobehav Rev 132:154–168

    Article  CAS  PubMed  Google Scholar 

  10. Mcdonald SJ, Shultz SR, Agoston DV (2021) The known unknowns: an overview of the state of blood-based protein biomarkers of mild traumatic brain injury. J Neurotrauma 38:2652–2666

    Article  PubMed  Google Scholar 

  11. Joyce JM, La PL, Walker R, Harris AD (2022) Magnetic resonance spectroscopy of traumatic brain injury and subconcussive hits: a systematic review and meta-analysis. J Neurotrauma 39:1455–1476

    Article  PubMed  PubMed Central  Google Scholar 

  12. Govind V, Gold S, Kaliannan K et al (2010) Whole-brain proton MR spectroscopic imaging of mild-to-moderate traumatic brain injury and correlation with neuropsychological deficits. J Neurotrauma. https://doi.org/10.1089/neu.2009.1159

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moffett JR, Arun P, Ariyannur PS, Namboodiri AMA (2013) N-acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. Front Neuroenerget 5:11

    Article  CAS  Google Scholar 

  14. Ashwal S, Holshouser B, Tong K et al (2004) Proton spectroscopy detected myoinositol in children with traumatic brain injury. Pediatr Res. https://doi.org/10.1203/01.PDR.0000139928.60530.7D

    Article  PubMed  Google Scholar 

  15. Bartnik-Olson BL, Alger JR, Babikian T et al (2021) The clinical utility of proton magnetic resonance spectroscopy in traumatic brain injury: recommendations from the ENIGMA MRS working group. Brain Imaging Behav. https://doi.org/10.1007/s11682-020-00330-6

    Article  PubMed  PubMed Central  Google Scholar 

  16. Turner S, Lazarus R, Marion D, Main KL (2021) Molecular and diffusion tensor imaging biomarkers of traumatic brain injury: principles for investigation and integration. J Neurotrauma 38:1762–1782

    Article  PubMed  Google Scholar 

  17. Eierud C, Craddock RC, Fletcher S et al (2014) Neuroimaging after mild traumatic brain injury: review and meta-analysis. Neuroimage Clin. https://doi.org/10.1016/j.nicl.2013.12.009

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tollard E, Galanaud D, Perlbarg V et al (2009) Experience of diffusion tensor imaging and 1H spectroscopy for outcome prediction in severe traumatic brain injury: preliminary results. Crit Care Med. https://doi.org/10.1097/CCM.0b013e31819cf050

    Article  PubMed  Google Scholar 

  19. Kay T, Harrington DE, Adams R et al (1993) Definition of mild traumatic brain injury. J Head Trauma Rehab. https://doi.org/10.1097/00001199-199309000-00010

    Article  Google Scholar 

  20. Baker SP, O’Neill B, Haddon W, Long WB (1974) The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. https://doi.org/10.1097/00005373-197403000-00001

    Article  PubMed  Google Scholar 

  21. van den Brand CL, van der Naalt J, Hageman G et al (2017) Addendum to the Dutch guideline for minor head/brain injury. Ned Tijdschr Geneeskd 161:D2258

    PubMed  Google Scholar 

  22. Marshall LF, Marshall SB, Klauber MR et al (1991) A new classification of head injury based on computerized tomography. J Neurosurg. https://doi.org/10.3171/sup.1991.75.1s.0s14

    Article  Google Scholar 

  23. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  PubMed  Google Scholar 

  24. Hu ML, Louie S, Cross CE et al (1993) Antioxidant protection against hypochlorous acid in human plasma. J Lab Clin Med 121:257–262

    CAS  PubMed  Google Scholar 

  25. van der Horn HJ, Mangina NR, Rakers SE et al (2021) White matter microstructure of the neural emotion regulation circuitry in mild traumatic brain injury. Eur J Neurosci 53:3463–3475

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stevens FL, Hurley RA, Taber KH (2011) Anterior cingulate cortex: unique role in cognition and emotion. J Neuropsychiatry Clin Neurosci 23:121–125

    Article  PubMed  Google Scholar 

  27. Oeltzschner G, Zöllner HJ, Hui SCN et al (2020) Osprey: open-source processing, reconstruction and estimation of magnetic resonance spectroscopy data. J Neurosci Methods. https://doi.org/10.1016/j.jneumeth.2020.108827

    Article  PubMed  PubMed Central  Google Scholar 

  28. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. https://doi.org/10.1002/mrm.1910300604

    Article  PubMed  Google Scholar 

  29. Penny WD, Friston KJ, Ashburner JT et al (2011) Statistical parametric mapping: the analysis of functional brain images. Elsevier, London

    Google Scholar 

  30. Jenkinson M, Beckmann CF, Behrens TEJ et al (2012) Fsl. Neuroimage 62:782–790

    Article  PubMed  Google Scholar 

  31. Quadrelli S, Mountford C, Ramadan S (2016) Hitchhiker’s guide to voxel segmentation for partial volume correction of in vivo magnetic resonance spectroscopy. Magn Reson Insights. https://doi.org/10.4137/mri.s32903

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kelley BJ, Lifshitz J, Povlishock JT (2007) Neuroinflammatory responses after experimental diffuse traumatic brain injury. J Neuropathol Exp Neurol. https://doi.org/10.1097/NEN.0b013e3181588245

    Article  PubMed  Google Scholar 

  33. Castell JV, Gómez-Lechón MJ, David M et al (1989) Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett. https://doi.org/10.1016/0014-5793(89)80476-4

    Article  PubMed  Google Scholar 

  34. Edwards KA, Gill JM, Pattinson CL et al (2020) Interleukin-6 is associated with acute concussion in military combat personnel. BMC Neurol. https://doi.org/10.1186/s12883-020-01760-x

    Article  PubMed  PubMed Central  Google Scholar 

  35. Edwards KA, Pattinson CL, Guedes VA et al (2020) Inflammatory cytokines associate with neuroimaging after acute mild traumatic brain injury. Front Neurol. https://doi.org/10.3389/fneur.2020.00348

    Article  PubMed  PubMed Central  Google Scholar 

  36. Meier TB, Huber DL, Bohorquez-Montoya L et al (2020) A prospective study of acute blood-based biomarkers for sport-related concussion. Ann Neurol. https://doi.org/10.1002/ana.25725

    Article  PubMed  PubMed Central  Google Scholar 

  37. Thompson HJ, Martha SR, Wang J, Becker KJ (2020) Impact of age on plasma inflammatory biomarkers in the 6 months following mild traumatic brain injury. J Head Trauma Rehab. https://doi.org/10.1097/HTR.0000000000000606

    Article  Google Scholar 

  38. Vedantam A, Brennan J, Levin HS et al (2021) Early versus late profiles of inflammatory cytokines after mild traumatic brain injury and their association with neuropsychological outcomes. J Neurotrauma. https://doi.org/10.1089/neu.2019.6979

    Article  PubMed  Google Scholar 

  39. Vagnozzi R, Tavazzi B, Signoretti S et al (2007) Temporal window of metabolic brain vulnerability to concussions: mitochondrial-related impairment—part I. Neurosurgery. https://doi.org/10.1227/01.NEU.0000280002.41696.D8

    Article  PubMed  Google Scholar 

  40. Clarke GJB, Skandsen T, Zetterberg H et al (2021) One-year prospective study of plasma biomarkers from CNS in patients with mild traumatic brain injury. Front Neurol. https://doi.org/10.3389/fneur.2021.643743

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vågberg M, Norgren N, Dring A et al (2015) Levels and age dependency of neurofilament light and Glial Fibrillary Acidic Protein in healthy individuals and their relation to the brain parenchymal fraction. PLoS ONE. https://doi.org/10.1371/journal.pone.0135886

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shahim P, Politis A, Van Der Merwe A et al (2020) Time course and diagnostic utility of NfL, tau, GFAP, and UCH-L1 in subacute and chronic TBI. Neurology. https://doi.org/10.1212/WNL.0000000000009985

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shahim P, Politis A, Van Der Merwe A et al (2020) Neurofilament light as a biomarker in traumatic brain injury. Neurology. https://doi.org/10.1212/WNL.0000000000009983

    Article  PubMed  PubMed Central  Google Scholar 

  44. Visser K, van der Horn HJ, Bourgonje AR et al (2022) Acute serum free thiols: a potentially modifiable biomarker of oxidative stress following traumatic brain injury. J Neurol 269:1–10

    Article  Google Scholar 

  45. Damba T, Bourgonje AR, Abdulle AE et al (2020) Oxidative stress is associated with suspected non-alcoholic fatty liver disease and all-cause mortality in the general population. Liver Int. https://doi.org/10.1111/liv.14562

    Article  PubMed  PubMed Central  Google Scholar 

  46. Koning AM, Meijers WC, Pasch A et al (2016) Serum free thiols in chronic heart failure. Pharmacol Res. https://doi.org/10.1016/j.phrs.2016.06.027

    Article  PubMed  Google Scholar 

  47. Borkent J, Ioannou M, Folkertsma TS et al (2023) Serum free thiols in recently diagnosed patients with schizophrenia spectrum disorder: a potentially useful biomarker of oxidative stress. Psychiatry Res. https://doi.org/10.1016/j.psychres.2023.115075

    Article  PubMed  Google Scholar 

  48. Abdul-Muneer PM, Schuetz H, Wang F et al (2013) Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2013.02.029

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dröge W (2002) Aging-related changes in the thiol/disulfide redox state: implications for the use of thiol antioxidants. Exp Gerontol 37:1333–1345

    Article  PubMed  Google Scholar 

  50. Cortese-Krott MM, Koning A, Kuhnle GGC et al (2017) The reactive species interactome: evolutionary emergence, biological significance, and opportunities for redox metabolomics and personalized medicine. Antioxid Redox Signal 27:684–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Donat CK, Scott G, Gentleman SM, Sastre M (2017) Microglial activation in traumatic brain injury. Front Aging Neurosci 9:208

    Article  PubMed  PubMed Central  Google Scholar 

  52. Huang CX, Li YH, Lu W et al (2022) Positron emission tomography imaging for the assessment of mild traumatic brain injury and chronic traumatic encephalopathy: recent advances in radiotracers. Neural Regen Res 17:74

    Article  CAS  PubMed  Google Scholar 

  53. Alam MM, Lee J, Lee SY (2017) Recent progress in the development of TSPO PET ligands for neuroinflammation imaging in neurological diseases. Nucl Med Mol Imaging 51:283–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Marco R, Ronen I, Branzoli F et al (2022) Diffusion-weighted MR spectroscopy (DW-MRS) is sensitive to LPS-induced changes in human glial morphometry: a preliminary study. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2021.10.005

    Article  PubMed  Google Scholar 

  55. Chen AM, Gerhalter T, Dehkharghani S et al (2023) Replicability of proton MR spectroscopic imaging findings in mild traumatic brain injury: implications for clinical applications. Neuroimage Clin 37:103325

    Article  PubMed  PubMed Central  Google Scholar 

  56. Oeltzschner G, Saleh MG, Rimbault D et al (2019) Advanced hadamard-encoded editing of seven low-concentration brain metabolites: principles of HERCULES. Neuroimage. https://doi.org/10.1016/j.neuroimage.2018.10.002

    Article  PubMed  Google Scholar 

  57. Bazarian JJ, Welch RD, Caudle K et al (2021) Accuracy of a rapid glial fibrillary acidic protein/ubiquitin carboxyl-terminal hydrolase L1 test for the prediction of intracranial injuries on head computed tomography after mild traumatic brain injury. Acad Emerg Med. https://doi.org/10.1111/acem.14366

    Article  PubMed  PubMed Central  Google Scholar 

  58. Truong V (2020) Duncan NW suggestions for improving the reporting of magnetic resonance spectroscopy voxels and spectra. Open Sci Framew 2020:1

    Google Scholar 

Download references

Acknowledgements

We would like to sincerely thank Marian L.C. Bulthuis and Marjan Reinders-Luinge for their valuable technical assistance.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

KV: Conceptualization, Methodology, Formal analysis, Data Curation, Writing—Original Draft, Writing—Review and Editing. MEDK: Conceptualization, Investigation, Writing—Review and Editing. DC: Conceptualization, Writing—Review and Editing. MGJK: Investigation, Writing—Review and Editing. AJS-K: Investigation, Writing—Review and Editing. ARB: Conceptualization, Writing—Review and Editing, Supervision. HVG: Conceptualization, Writing—Review and Editing, Supervision. JVDN: Conceptualization, Writing—Review and Editing, Supervision. HJVDH: Conceptualization, Methodology, Formal analysis, Investigation, Writing—Review and Editing, Supervision.

Corresponding author

Correspondence to Harm Jan van der Horn.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethical approval

The AIM-TBI study was approved by the Medical Ethical Committee of the UMCG (METc 2018/681), and all participants provided written informed consent. All study procedures were performed in accordance with the declaration of Helsinki.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visser, K., de Koning, M.E., Ciubotariu, D. et al. An exploratory study on the association between blood-based biomarkers and subacute neurometabolic changes following mild traumatic brain injury. J Neurol 271, 1985–1998 (2024). https://doi.org/10.1007/s00415-023-12146-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-12146-7

Keywords

Navigation