Skip to main content

Advertisement

Log in

The elusive nature of the oligoclonal bands in multiple sclerosis

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Intrathecal immunoglobulin G (IgG) and oligoclonal bands (OCBs) detected in both the brain and cerebrospinal fluid (CSF) are seminal features of multiple sclerosis (MS). The presence of OCBs correlates with elevated disease burden and severity and supports the diagnosis of MS. Despite numerous investigations into the potential viral and autoantigen targets, the precise antigenic specificity of OCBs has remained elusive. We have little knowledge of the nature regarding these oligoclonal IgG bands. Here, we present compelling evidence highlighting the key findings that both OCBs and intrathecal IgG antibodies are under genetic control and that OCBs originate from clonal B-cells in both the periphery and CNS. We propose that MS OCBs are IgG immune complexes composed of IgG1 and IgG3 antibodies and that the pathological role of OCB stems from the IgG effector functions of these complexes, leading to demyelination and axonal injuries. We present additional evidence regarding the nature of MS OCBs: (1) disease-modifying therapies have been shown to affect CSF OCB; (2) OCBs have also been detected in several neuroinfectious diseases; (3) Epstein–Barr virus (EBV) has been particularly linked with MS pathogenesis, and its association with OCB is an important area of study. Although OCBs are closely associated with MS, more meticulously planned research is necessary to clarify the precise role of OCB in MS, both in terms of disease pathogenesis and diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Glynn et al., 1982

Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mehta PD et al (1981) Bound antibody in multiple sclerosis brains. J Neurol Sci 49(1):91–98

    CAS  PubMed  Google Scholar 

  2. Glynn P et al (1982) Analysis of immunoglobulin G in multiple sclerosis brain: quantitative and isoelectric focusing studies. Clin Exp Immunol 48(1):102–110

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Link H, Huang YM (2006) Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness. J Neuroimmunol 180(1–2):17–28

    CAS  PubMed  Google Scholar 

  4. Walsh MJ, Tourtellotte WW (1986) Temporal invariance and clonal uniformity of brain and cerebrospinal IgG, IgA, and IgM in multiple sclerosis. J Exp Med 163(1):41–53

    CAS  PubMed  Google Scholar 

  5. Harrington MG, Kennedy PG (1987) The clinical use of cerebrospinal fluid studies in demyelinating neurological diseases. Postgrad Med J 63(743):735–740

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Joseph FG et al (2009) CSF oligoclonal band status informs prognosis in multiple sclerosis: a case control study of 100 patients. J Neurol Neurosurg Psychiatry 80(3):292–296

    CAS  PubMed  Google Scholar 

  7. Tintore M et al (2008) Do oligoclonal bands add information to MRI in first attacks of multiple sclerosis? Neurology 70(13 Pt 2):1079–1083

    CAS  PubMed  Google Scholar 

  8. Ferreira D et al (2014) Multiple sclerosis patients lacking oligoclonal bands in the cerebrospinal fluid have less global and regional brain atrophy. J Neuroimmunol 274(1–2):149–154

    CAS  PubMed  Google Scholar 

  9. Calabrese M et al (2012) Cortical lesion load associates with progression of disability in multiple sclerosis. Brain 135(Pt 10):2952–2961

    PubMed  Google Scholar 

  10. Gasperi C et al (2019) Association of intrathecal immunoglobulin G synthesis with disability worsening in multiple sclerosis. JAMA Neurol 76(7):841–849

    PubMed  PubMed Central  Google Scholar 

  11. Zeman AZ et al (1996) A study of oligoclonal band negative multiple sclerosis. J Neurol Neurosurg Psychiatry 60(1):27–30

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Winger RC, Zamvil SS (2016) Antibodies in multiple sclerosis oligoclonal bands target debris. Proc Natl Acad Sci U S A 113(28):7696–7698

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fitzner B, Hecker M, Zettl UK (2015) Molecular biomarkers in cerebrospinal fluid of multiple sclerosis patients. Autoimmun Rev 14(10):903–913

    CAS  PubMed  Google Scholar 

  14. Thompson AJ et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17(2):162–173

    PubMed  Google Scholar 

  15. Villar LM et al (2002) Intrathecal IgM synthesis predicts the onset of new relapses and a worse disease course in MS. Neurology 59(4):555–559

    CAS  PubMed  Google Scholar 

  16. Villar LM et al (2005) Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive disease course in MS. J Clin Invest 115(1):187–194

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Villar L et al (2008) Influence of oligoclonal IgM specificity in multiple sclerosis disease course. Mult Scler 14(2):183–187

    CAS  PubMed  Google Scholar 

  18. Carta S et al (2022) Oligoclonal bands: clinical utility and interpretation cues. Crit Rev Clin Lab Sci 59(6):391–404

    CAS  PubMed  Google Scholar 

  19. Pannewitz-Makaj K et al (2020) Evidence of oligoclonal bands does not exclude non-inflammatory neurological diseases. Diagnostics (Basel) 11(1):37

    PubMed  Google Scholar 

  20. Gilden DH (2005) Infectious causes of multiple sclerosis. Lancet Neurol 4(3):195–202

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rejdak K, Stelmasiak Z, Grieb P (2019) Cladribine induces long lasting oligoclonal bands disappearance in relapsing multiple sclerosis patients: 10-year observational study. Mult Scler Relat Disord 27:117–120

    PubMed  Google Scholar 

  22. von Glehn F et al (2012) Disappearance of cerebrospinal fluid oligoclonal bands after natalizumab treatment of multiple sclerosis patients. Mult Scler 18(7):1038–1041

    Google Scholar 

  23. Mancuso R et al (2014) Effects of natalizumab on oligoclonal bands in the cerebrospinal fluid of multiple sclerosis patients: a longitudinal study. Mult Scler 20(14):1900–1903

    CAS  PubMed  Google Scholar 

  24. Annunziata P et al (2006) Absence of cerebrospinal fluid oligoclonal bands is associated with delayed disability progression in relapsing-remitting MS patients treated with interferon-beta. J Neurol Sci 244(1–2):97–102

    CAS  PubMed  Google Scholar 

  25. Brettschneider J et al (2009) IgG antibodies against measles, rubella, and varicella zoster virus predict conversion to multiple sclerosis in clinically isolated syndrome. PLoS ONE 4(11):e7638

    PubMed  PubMed Central  Google Scholar 

  26. Brandle SM et al (2016) Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins. Proc Natl Acad Sci U S A 113(28):7864–7869

    PubMed  PubMed Central  Google Scholar 

  27. Graner M et al (2020) Oligoclonal IgG antibodies in multiple sclerosis target patient-specific peptides. PLoS ONE 15(2):e0228883

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu X et al (2011) Intrathecally synthesized IgG in multiple sclerosis cerebrospinal fluid recognizes identical epitopes over time. J Neuroimmunol 240–241:129–136

    PubMed  PubMed Central  Google Scholar 

  29. Bar-Or A et al (2020) Epstein-Barr virus in multiple sclerosis: theory and emerging immunotherapies. Trends Mol Med 26(3):296–310

    CAS  PubMed  Google Scholar 

  30. Cepok S et al (2005) Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis. J Clin Invest 115(5):1352–1360

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang Z et al (2021) Antibodies from multiple sclerosis brain identified Epstein-Barr virus nuclear antigen 1 & 2 epitopes which are recognized by oligoclonal bands. J Neuroimmune Pharmacol 16(3):567–580

    PubMed  Google Scholar 

  32. Bjornevik K et al (2022) Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375(6578):296–301

    CAS  PubMed  Google Scholar 

  33. Franciotta D et al (2011) Cerebrospinal BAFF and Epstein-Barr virus-specific oligoclonal bands in multiple sclerosis and other inflammatory demyelinating neurological diseases. J Neuroimmunol 230(1–2):160–163

    CAS  PubMed  Google Scholar 

  34. Castellazzi M et al (2014) Epstein-Barr virus-specific intrathecal oligoclonal IgG production in relapsing-remitting multiple sclerosis is limited to a subset of patients and is composed of low-affinity antibodies. J Neuroinflammation 11:188

    PubMed  PubMed Central  Google Scholar 

  35. Lanz TV et al (2022) Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603(7900):321–327

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Paterson PY, Whitacre CC (1981) The enigma of oligoclonal immunoglobulin G in cerebrospinal fluid from multiple sclerosis patients. Immunol Today 2(6):111–117

    CAS  PubMed  Google Scholar 

  37. Ulvestad E et al (1994) Reactive microglia in multiple sclerosis lesions have an increased expression of receptors for the Fc part of IgG. J Neurol Sci 121(2):125–131

    CAS  PubMed  Google Scholar 

  38. Woodroofe MN, Hayes GM, Cuzner ML (1989) Fc receptor density, MHC antigen expression and superoxide production are increased in interferon-gamma-treated microglia isolated from adult rat brain. Immunology 68(3):421–426

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pryce G, Baker D (2018) Oligoclonal bands in multiple sclerosis; functional significance and therapeutic implications. Does the specificity matter? Mult Scler Relat Disord. 25:131–137

    PubMed  Google Scholar 

  40. den Dunnen J et al (2021) Multiple sclerosis: why we should focus on both sides of the (auto)antibody. Neural Regen Res 16(12):2422–2424

    CAS  Google Scholar 

  41. Bournazos S et al (2020) Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection. Nature 588(7838):485–490

    CAS  PubMed  PubMed Central  Google Scholar 

  42. van der Poel M et al (2020) IgG immune complexes break immune tolerance of human microglia. J Immunol 205(9):2511–2518

    PubMed  Google Scholar 

  43. International Multiple Sclerosis Genetics C et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 476(7359):214–219

    Google Scholar 

  44. Wu JS et al (2010) Presence of CSF oligoclonal bands (OCB) is associated with the HLA-DRB1 genotype in a West Australian multiple sclerosis cohort. J Neurol Sci 288(1–2):63–67

    CAS  PubMed  Google Scholar 

  45. Leone MA et al (2013) Association of genetic markers with CSF oligoclonal bands in multiple sclerosis patients. PLoS ONE 8(6):e64408

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Goris A et al (2015) Genetic variants are major determinants of CSF antibody levels in multiple sclerosis. Brain 138(Pt 3):632–643

    PubMed  PubMed Central  Google Scholar 

  47. Mero IL et al (2013) Oligoclonal band status in Scandinavian multiple sclerosis patients is associated with specific genetic risk alleles. PLoS ONE 8(3):e58352

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Romero-Pinel L et al (2011) HLA-DRB1: genetic susceptibility and disability progression in a Spanish multiple sclerosis population. Eur J Neurol 18(2):337–342

    CAS  PubMed  Google Scholar 

  49. Buck D et al (2013) Genetic variants in the immunoglobulin heavy chain locus are associated with the IgG index in multiple sclerosis. Ann Neurol 73(1):86–94

    CAS  PubMed  Google Scholar 

  50. Fukazawa T et al (1998) The significance of oligoclonal bands in multiple sclerosis in Japan: relevance of immunogenetic backgrounds. J Neurol Sci 158(2):209–214

    CAS  PubMed  Google Scholar 

  51. Vidarsson G, Dekkers G, Rispens T (2014) IgG subclasses and allotypes: from structure to effector functions. Front Immunol 5:520

    PubMed  PubMed Central  Google Scholar 

  52. Jefferis R, Lefranc MP (2009) Human immunoglobulin allotypes: possible implications for immunogenicity. MAbs 1(4):332–338

    PubMed  PubMed Central  Google Scholar 

  53. Salier JP et al (1981) Preferential synthesis of the G1m(1) allotype of IgG1 in the central nervous system of multiple sclerosis patients. Science 213(4514):1400–1402

    CAS  PubMed  Google Scholar 

  54. Salier JP et al (1983) Distribution of nominal and latent IgG (Gm) allotypes in plaques of multiple sclerosis brain. Clin Exp Immunol 54(3):634–640

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lindeman I et al (2022) Stereotyped B-cell responses are linked to IgG constant region polymorphisms in multiple sclerosis. Eur J Immunol 52(4):550–565

    CAS  PubMed  Google Scholar 

  56. Glynn P et al (1982) Rapid analysis of immunoglobulin isoelectric focusing patterns with cellulose nitrate sheets and immunoperoxidase staining. J Immunol Methods 51(2):251–257

    CAS  PubMed  Google Scholar 

  57. Tavolato BF (1975) Immunoglobulin G distribution in multiple sclerosis brain. An immunofluorescence study. J Neurol Sci 24(1):1–11

    CAS  PubMed  Google Scholar 

  58. Beseler C et al (2017) The complex relationship between oligoclonal bands, lymphocytes in the cerebrospinal fluid, and immunoglobulin G antibodies in multiple sclerosis: Indication of serum contribution. PLoS ONE 12(10):e0186842

    PubMed  PubMed Central  Google Scholar 

  59. von Budingen HC et al (2012) B cell exchange across the blood-brain barrier in multiple sclerosis. J Clin Invest 122(12):4533–4543

    Google Scholar 

  60. Bankoti J et al (2014) In multiple sclerosis, oligoclonal bands connect to peripheral B-cell responses. Ann Neurol 75(2):266–276

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tomescu-Baciu A et al (2019) Persistence of intrathecal oligoclonal B cells and IgG in multiple sclerosis. J Neuroimmunol 333:576966

    CAS  PubMed  Google Scholar 

  62. van Langelaar J et al (2019) Induction of brain-infiltrating T-bet-expressing B cells in multiple sclerosis. Ann Neurol 86(2):264–278

    PubMed  PubMed Central  Google Scholar 

  63. Andersson M et al (1994) Cerebrospinal fluid in the diagnosis of multiple sclerosis: a consensus report. J Neurol Neurosurg Psychiatry 57(8):897–902

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bonnan M (2015) Intrathecal IgG synthesis: a resistant and valuable target for future multiple sclerosis treatments. Mult Scler Int 2015:296184

    PubMed  PubMed Central  Google Scholar 

  65. Mares J et al (2008) Correlation of the IgG index and oligoclonal bands in the cerebrospinal fluid of patients with multiple sclerosis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 152(2):247–249

    PubMed  Google Scholar 

  66. Simonsen CS et al (2020) The diagnostic value of IgG index versus oligoclonal bands in cerebrospinal fluid of patients with multiple sclerosis. Mult Scler J Exp Transl Clin 6(1):2055217319901291

    PubMed  PubMed Central  Google Scholar 

  67. Zheng Y et al (2020) IgG index revisited: diagnostic utility and prognostic value in multiple sclerosis. Front Immunol 11:1799

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Farina G et al (2017) Increased cortical lesion load and intrathecal inflammation is associated with oligoclonal bands in multiple sclerosis patients: a combined CSF and MRI study. J Neuroinflammation 14(1):40

    PubMed  PubMed Central  Google Scholar 

  69. Avasarala JR, Cross AH, Trotter JL (2001) Oligoclonal band number as a marker for prognosis in multiple sclerosis. Arch Neurol 58(12):2044–2045

    CAS  PubMed  Google Scholar 

  70. Karrenbauer VD et al (2021) Cerebrospinal fluid oligoclonal immunoglobulin gamma bands and long-term disability progression in multiple sclerosis: a retrospective cohort study. Sci Rep 11(1):14987

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bournazos S, Ravetch JV (2017) Diversification of IgG effector functions. Int Immunol 29(7):303–310

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dashivets T et al (2015) Multi-angle effector function analysis of human monoclonal IgG glycovariants. PLoS ONE 10(12):e0143520

    PubMed  PubMed Central  Google Scholar 

  73. Mathey EK et al (2007) Neurofascin as a novel target for autoantibody-mediated axonal injury. J Exp Med 204(10):2363–2372

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Elliott C et al (2012) Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis. Brain 135(Pt 6):1819–1833

    PubMed  PubMed Central  Google Scholar 

  75. Blauth K et al (2015) Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid cause demyelination of spinal cord explants. Acta Neuropathol 130(6):765–781

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhou W et al (2023) Multiple sclerosis plasma IgG aggregates induce complement-dependent neuronal apoptosis. Cell Death Dis 14(4):254

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhou W et al (2023) Plasma IgG aggregates as biomarkers for multiple sclerosis. Clin Immunol 256:109801

    CAS  PubMed  Google Scholar 

  78. Losy J, Mehta PD, Wisniewski HM (1990) Identification of IgG subclasses’ oligoclonal bands in multiple sclerosis CSF. Acta Neurol Scand 82(1):4–8

    CAS  PubMed  Google Scholar 

  79. Grimaldi LM et al (1986) IgG1,3 and 4 oligoclonal bands in multiple sclerosis and other neurological diseases. Ital J Neurol Sci 7(5):507–513

    CAS  PubMed  Google Scholar 

  80. Caroscio JT et al (1986) Quantitative cerebrospinal fluid IgG measurements as a marker of disease activity in multiple sclerosis. Arch Neurol 43(11):1129–1131

    CAS  PubMed  Google Scholar 

  81. Kennedy PGE et al (2022) Higher levels of IgG3 antibodies in serum, but not in CSF, distinguish multiple sclerosis from other neurological disorders. J Neuroimmune Pharmacol 17(3–4):526–37

    PubMed  Google Scholar 

  82. Kennedy PGE et al (2021) Aberrant immunoglobulin G glycosylation in multiple sclerosis. J Neuroimmune Pharmacol 17(1–2):218–227

    PubMed  PubMed Central  Google Scholar 

  83. Li D et al (2021) Sialylated immunoglobulin G: a promising diagnostic and therapeutic strategy for autoimmune diseases. Theranostics 11(11):5430–5446

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

NIMH, 4R33MH118174, Xiaoli Yu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, P.G.E., George, W. & Yu, X. The elusive nature of the oligoclonal bands in multiple sclerosis. J Neurol 271, 116–124 (2024). https://doi.org/10.1007/s00415-023-12081-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-12081-7

Keywords

Navigation