Skip to main content

Advertisement

Log in

Neuroimaging determinants of cognitive impairment in the memory clinic: how important is the vascular burden?

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

While neurodegenerative and vascular neurocognitive disorder (NCD) often co-occur, the contribution of vascular lesions, especially stroke lesions identified on MRI, to global cognition in a real-life memory clinic population remains unclear. The main objective of this retrospective study was to determine NCD neuroimaging correlates: the GM atrophy pattern and vascular lesions (especially stroke lesion localization by voxel-based lesion-symptom mapping, VLSM) in a memory clinic. We included 336 patients with mild or major NCD who underwent cerebral MRI and a neuropsychological assessment. The GM atrophy pattern (obtained by voxel-based morphometry, VBM) and the stroke lesion localization (obtained by VLSM) associated with G5 z-score (a global cognitive score), were included as independent variables with other neuroimaging and clinical indices in a stepwise linear regression model. The mean age was 70.3 years and the mean MMSE score 21.3. On MRI, 75 patients had at least one stroke lesion. The G 5 z-score was associated with GM density in the pattern selected by the VBM analysis (R2 variation = 0.166, p < 0.001) and the presence of a stroke lesion in the region selected by the VSLM analysis (mainly in the right frontal region; R2 variation = 0.018, p = 0.008). The interaction between the two factors was insignificant (p = 0.374). In conclusion, in this first study combining VBM and VLSM analysis in a memory clinic, global cognition was associated with a specific GM atrophy pattern and the presence of a stroke lesion mainly in the right frontal region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The conditions of our ethics approval do not permit public archiving of full data. Readers seeking access to full data should contact the corresponding author (DA) at the Department of Neurology, University of Picardy. Access will be granted to named individuals in accordance with ethical procedures governing the reuse of sensitive data.

References

  1. Neuropathology Group. Medical Research Council Cognitive Function and Aging Study (2001) Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 357:169–175. https://doi.org/10.1016/s0140-6736(00)03589-3

    Article  Google Scholar 

  2. van der Flier WM, Scheltens P (2005) Epidemiology and risk factors of dementia. J Neurol Neurosurg Psychiatry 76:v2–v7. https://doi.org/10.1136/jnnp.2005.082867

    Article  PubMed  PubMed Central  Google Scholar 

  3. Picard C, Pasquier F, Martinaud O et al (2011) Early onset dementia: characteristics in a large cohort from academic memory clinics. Alzheimer Dis Assoc Disord 25:203–205. https://doi.org/10.1097/WAD.0b013e3182056be7

    Article  PubMed  Google Scholar 

  4. Duyckaerts C, Bennecib M, Grignon Y et al (1997) Modeling the relation between neurofibrillary tangles and intellectual status. Neurobiol Aging 18:267–273

    Article  CAS  PubMed  Google Scholar 

  5. Seab JP, Jagust WJ, Wong ST et al (1988) Quantitative NMR measurements of hippocampal atrophy in Alzheimer’s disease. Magn Reson Med 8:200–208

    Article  CAS  PubMed  Google Scholar 

  6. Dickerson BC, Bakkour A, Salat DH et al (2009) The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex 19:497–510. https://doi.org/10.1093/cercor/bhn113

    Article  PubMed  Google Scholar 

  7. Besson FL, La Joie R, Doeuvre L et al (2015) Cognitive and brain profiles associated with current neuroimaging biomarkers of preclinical Alzheimer’s disease. J Neurosci 35:10402–10411. https://doi.org/10.1523/JNEUROSCI.0150-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alexander SK, Rittman T, Xuereb JH et al (2014) Validation of the new consensus criteria for the diagnosis of corticobasal degeneration. J Neurol Neurosurg Psychiatr 85:925–929. https://doi.org/10.1136/jnnp-2013-307035

    Article  CAS  Google Scholar 

  9. Boxer AL, Yu J-T, Golbe LI et al (2017) Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. The Lancet Neurology 16:552–563. https://doi.org/10.1016/S1474-4422(17)30157-6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gorno-Tempini ML, Hillis AE, Weintraub S et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014. https://doi.org/10.1212/WNL.0b013e31821103e6

    Article  PubMed  PubMed Central  Google Scholar 

  11. McKeith IG, Boeve BF, Dickson DW et al (2017) Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 89:88–100. https://doi.org/10.1212/WNL.0000000000004058

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rascovsky K, Hodges JR, Knopman D et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477. https://doi.org/10.1093/brain/awr179

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yang J, Pan P, Song W et al (2012) Voxelwise meta-analysis of gray matter anomalies in Alzheimer’s disease and mild cognitive impairment using anatomic likelihood estimation. J Neurol Sci 316:21–29. https://doi.org/10.1016/j.jns.2012.02.010

    Article  PubMed  Google Scholar 

  14. Meeter LH, Kaat LD, Rohrer JD, van Swieten JC (2017) Imaging and fluid biomarkers in frontotemporal dementia. Nat Rev Neurol 13:406–419. https://doi.org/10.1038/nrneurol.2017.75

    Article  CAS  PubMed  Google Scholar 

  15. Ossenkoppele R, Pijnenburg YAL, Perry DC et al (2015) The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain 138:2732–2749. https://doi.org/10.1093/brain/awv191

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harper L, Bouwman F, Burton EJ et al (2017) Patterns of atrophy in pathologically confirmed dementias: a voxelwise analysis. J Neurol Neurosurg Psychiatry 88:908–916. https://doi.org/10.1136/jnnp-2016-314978

    Article  PubMed  Google Scholar 

  17. Sachdev P, Kalaria R, O’Brien J et al (2014) Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord 28:206–218. https://doi.org/10.1097/WAD.0000000000000034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Puy L, Barbay M, Roussel M et al (2018) Neuroimaging determinants of poststroke cognitive performance: the GRECogVASC study. Stroke 49:2666–2673. https://doi.org/10.1161/STROKEAHA.118.021981

    Article  PubMed  Google Scholar 

  19. Weaver NA, Zhao L, Biesbroek JM et al (2019) The Meta VCI Map consortium for meta-analyses on strategic lesion locations for vascular cognitive impairment using lesion-symptom mapping: Design and multicenter pilot study. Alzheimer’s Dementia Diagnosis Assessment Disease Monit 11:310–326. https://doi.org/10.1016/j.dadm.2019.02.007

    Article  Google Scholar 

  20. Weaver NA, Kuijf HJ, Aben HP et al (2021) Strategic infarct locations for post-stroke cognitive impairment: a pooled analysis of individual patient data from 12 acute ischaemic stroke cohorts. Lancet Neurol 20:448–459. https://doi.org/10.1016/S1474-4422(21)00060-0

    Article  PubMed  Google Scholar 

  21. White L, Small BJ, Petrovitch H et al (2005) Recent clinical-pathologic research on the causes of dementia in late life: update from the Honolulu-Asia aging study. J Geriatr Psychiatry Neurol 18:224–227. https://doi.org/10.1177/0891988705281872

    Article  PubMed  Google Scholar 

  22. Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA (2009) The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol 66:200–208. https://doi.org/10.1002/ana.21706

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kapasi A, DeCarli C, Schneider JA (2017) Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol 134:171–186. https://doi.org/10.1007/s00401-017-1717-7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Oveisgharan S, Dawe RJ, Yu L et al (2022) Frequency and underlying pathology of pure vascular cognitive impairment. JAMA Neurol 79:1277. https://doi.org/10.1001/jamaneurol.2022.3472

    Article  PubMed  PubMed Central  Google Scholar 

  25. Toledo JB, Arnold SE, Raible K et al (2013) Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain 136:2697–2706. https://doi.org/10.1093/brain/awt188

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gladman JT, Corriveau RA, Debette S et al (2019) Vascular contributions to cognitive impairment and dementia: research consortia that focus on etiology and treatable targets to lessen the burden of dementia worldwide. Alzheimer’s Dementia Transl Res Clin Interv 5:789–796. https://doi.org/10.1016/j.trci.2019.09.017

    Article  Google Scholar 

  27. Gorelick PB, Scuteri A, Black SE et al (2011) Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42:2672–2713. https://doi.org/10.1161/STR.0b013e3182299496

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sweeney MD, Montagne A, Sagare AP et al (2019) Vascular dysfunction—the disregarded partner of Alzheimer’s disease. Alzheimers Dement 15:158–167. https://doi.org/10.1016/j.jalz.2018.07.222

    Article  PubMed  PubMed Central  Google Scholar 

  29. Heinen R, Groeneveld ON, Barkhof F et al (2020) Small vessel disease lesion type and brain atrophy: the role of co-occurring amyloid. Alzheimers Dement (Amst) 12:e12060. https://doi.org/10.1002/dad2.12060

    Article  PubMed  Google Scholar 

  30. Boomsma JMF, Exalto LG, Barkhof F et al (2017) Vascular cognitive impairment in a memory clinic population: rationale and design of the “Utrecht-Amsterdam Clinical Features and Prognosis in Vascular Cognitive Impairment” (TRACE-VCI) study. JMIR Res Protoc 6:e60. https://doi.org/10.2196/resprot.6864

    Article  PubMed  PubMed Central  Google Scholar 

  31. Association American Psychiatric (2013) Diagnostic and statistical manual of mental disorders: DSM-5, 5th Revised. American Psychiatric Publishing, Washington

    Book  Google Scholar 

  32. Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279. https://doi.org/10.1016/j.jalz.2011.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  33. McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269. https://doi.org/10.1016/j.jalz.2011.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nelson PT, Dickson DW, Trojanowski JQ et al (2019) Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142:1503–1527. https://doi.org/10.1093/brain/awz099

    Article  PubMed  PubMed Central  Google Scholar 

  35. Höglinger GU, Respondek G, Stamelou M et al (2017) Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 32:853–864. https://doi.org/10.1002/mds.26987

    Article  PubMed  PubMed Central  Google Scholar 

  36. Oslin D, Atkinson RM, Smith DM, Hendrie H (1998) Alcohol related dementia: proposed clinical criteria. Int J Geriatr Psychiatry 13:203–212

    Article  CAS  PubMed  Google Scholar 

  37. Nakajima M, Yamada S, Miyajima M et al (2021) Guidelines for management of idiopathic normal pressure hydrocephalus (third edition): endorsed by the Japanese Society of normal pressure hydrocephalus. Neurol Med Chir (Tokyo) 61:63–97. https://doi.org/10.2176/nmc.st.2020-0292

    Article  PubMed  Google Scholar 

  38. Dubois B, Feldman HH, Jacova C et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629. https://doi.org/10.1016/S1474-4422(14)70090-0

    Article  PubMed  Google Scholar 

  39. Godefroy O, Leclercq C, Roussel M et al (2012) French adaptation of the vascular cognitive impairment harmonization standards: the GRECOG-VASC study. Int J Stroke 7:362–363. https://doi.org/10.1111/j.1747-4949.2012.00794.x

    Article  PubMed  Google Scholar 

  40. Kalafat M, Hugonot-Diener L, Poitrenaud J (2003) Standardisation et étalonnage français du Mini Mental State (MMS) version GRÉCO. Rev Neuropsychol 13:209–236

    Google Scholar 

  41. Thuillard Colombo F, Assal G (1992) Adaptation française du test de dénomination de Boston. Versions abrégées. Eur Rev Appl Psychol 42:67–73

    Google Scholar 

  42. Deloche G, Hannequin D (1997) Test de dénomination orale d’images: DO 80. Éd. du Centre de psychologie appliquée, Paris, France

  43. Albert ML (1973) A simple test of visual neglect. Neurology 23:658–664

    Article  CAS  PubMed  Google Scholar 

  44. Rey A (1959) Test de copie d’une figure complexe: Manuel., Les éditions du Centre de Psychologie Appliquée. Paris

  45. Van der Linden M, Coyette F, Poitrenaud J, et les membres du GREMEM (2004) L’épreuve de rappel libre/rappel indicé à 16 items (RL/RI-16)"L’évaluation des troubles de la mémoire. Présentation de quatre tests de mémoire épisodique". Solal, Marseille

  46. Baddeley A, Emslie H, Nimmo-Smith I (1994) Doors and people: a test of visual and verbal recall and recognition. Thames Valley Test Company, Suffolk

  47. Wechsler D, Grégoire J (2000) Echelle d’Intelligence de Wechsler pour adultes: manuel : WAIS-III. Les Editions du Centre de Psychologie Appliquée, Paris

    Google Scholar 

  48. Godefroy O, Azouvi P, Robert P et al (2010) Dysexecutive syndrome: diagnostic criteria and validation study. Ann Neurol 68:855–864. https://doi.org/10.1002/ana.22117

    Article  PubMed  Google Scholar 

  49. Cardebat D, Doyon B, Puel M et al (1990) Formal and semantic lexical evocation in normal subjects. Performance and dynamics of production as a function of sex, age and educational level. Acta Neurol Belg 90:207–217

    CAS  PubMed  Google Scholar 

  50. Reitan R (1958) Validity of trail making tests as an indicator of organic brain damage, Percept Mot skill

  51. Godefroy O, Grefex (Groupe de Réflexion pour l’évaluation des Fonctions EXécutives) (2008) Fonctions exécutives et pathologies neurologiques et psychiatriques: évaluation en pratique clinique, Solal. Marseille

  52. Montgomery SA, Asberg M (1979) A new depression scale designed to be sensitive to change. Br J Psychiatry 134:382–389

    Article  CAS  PubMed  Google Scholar 

  53. Lewinsohn PM, Seeley JR, Roberts RE, Allen NB (1997) Center for Epidemiologic Studies Depression Scale (CES-D) as a screening instrument for depression among community-residing older adults. Psychol Aging 12:277–287

    Article  CAS  PubMed  Google Scholar 

  54. Goldberg D, Bridges K, Duncan-Jones P, Grayson D (1988) Detecting anxiety and depression in general medical settings. BMJ 297:897–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lawton MP, Brody EM (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9:179–186

    Article  CAS  PubMed  Google Scholar 

  56. Godefroy O, Gibbons L, Diouf M et al (2014) Validation of an integrated method for determining cognitive ability: Implications for routine assessments and clinical trials. Cortex 54:51–62. https://doi.org/10.1016/j.cortex.2014.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  57. Roussel M, Godefroy O (2016) La batterie GRECOGVASC : Evaluation et diagnostic des troubles neurocognitifs vasculaires avec ou sans contexte d’accident vasculaire cérébral. DE BOECK UNIVERSITE

  58. Box GEP, Cox DR (1964) An analysis of transformations. Journal of the Royal Statistical Society Series B (Methodological 211–252

  59. Dufouil C, Dubois B, Vellas B, et al (2017) Cognitive and imaging markers in non-demented subjects attending a memory clinic: study design and baseline findings of the MEMENTO cohort. Alzheimer’s Res Ther. https://doi.org/10.1186/s13195-017-0288-0

  60. Godefroy O, Duhamel A, Leclerc X, et al (1998) Brain–behaviour relationships. Some models and related statistical procedures for the study of brain-damaged patients. Brain 121(Pt 8):1545–1556

  61. Hachinski V, Iadecola C, Petersen RC et al (2006) National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke 37:2220–2241. https://doi.org/10.1161/01.STR.0000237236.88823.47

    Article  PubMed  Google Scholar 

  62. Cordonnier C, Potter GM, Jackson CA et al (2009) improving interrater agreement about brain microbleeds: development of the Brain Observer MicroBleed Scale (BOMBS). Stroke 40:94–99. https://doi.org/10.1161/STROKEAHA.108.526996

    Article  PubMed  Google Scholar 

  63. Wardlaw JM, Smith EE, Biessels GJ et al (2013) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12:822–838. https://doi.org/10.1016/S1474-4422(13)70124-8

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fazekas F, Chawluk JB, Alavi A et al (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149:351–356. https://doi.org/10.2214/ajr.149.2.351

    Article  CAS  PubMed  Google Scholar 

  65. Wahlund LO, Barkhof F, Fazekas F et al (2001) A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 32:1318–1322. https://doi.org/10.1161/01.str.32.6.1318

    Article  CAS  PubMed  Google Scholar 

  66. Scheltens P, Leys D, Barkhof F et al (1992) Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatr 55:967–972

    Article  CAS  Google Scholar 

  67. Charidimou A, Linn J, Vernooij MW et al (2015) Cortical superficial siderosis: detection and clinical significance in cerebral amyloid angiopathy and related conditions. Brain 138:2126–2139. https://doi.org/10.1093/brain/awv162

    Article  PubMed  Google Scholar 

  68. Doubal FN, MacLullich AMJ, Ferguson KJ et al (2010) Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke 41:450–454. https://doi.org/10.1161/STROKEAHA.109.564914

    Article  PubMed  Google Scholar 

  69. Schmidt P, Gaser C, Arsic M et al (2012) An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. Neuroimage 59:3774–3783. https://doi.org/10.1016/j.neuroimage.2011.11.032

    Article  PubMed  Google Scholar 

  70. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851. https://doi.org/10.1016/j.neuroimage.2005.02.018

    Article  PubMed  Google Scholar 

  71. Resnick SM, Pham DL, Kraut MA et al (2003) Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 23:3295–3301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289. https://doi.org/10.1006/nimg.2001.0978

    Article  CAS  PubMed  Google Scholar 

  73. Arnoux A, Toba MN, Duering M et al (2018) Is VLSM a valid tool for determining the functional anatomy of the brain? Usefulness of additional Bayesian network analysis. Neuropsychologia 121:69–78. https://doi.org/10.1016/j.neuropsychologia.2018.10.003

    Article  PubMed  Google Scholar 

  74. Arnoux A, Triquenot-Bagan A, Andriuta D et al (2017) Imaging characteristics of venous parenchymal abnormalities. Stroke 48:3258–3265. https://doi.org/10.1161/STROKEAHA.117.017937

    Article  PubMed  Google Scholar 

  75. Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132. https://doi.org/10.1016/j.cortex.2008.05.004

    Article  PubMed  Google Scholar 

  76. Vermeer SE, Prins ND, den Heijer T et al (2003) Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 348:1215–1222. https://doi.org/10.1056/NEJMoa022066

    Article  PubMed  Google Scholar 

  77. Olsson Y, Brun A, Englund E (1996) Fundamental pathological lesions in vascular dementia. Acta Neurol Scand 94:31–38. https://doi.org/10.1111/j.1600-0404.1996.tb00370.x

    Article  Google Scholar 

  78. Knopman DS, Parisi JE, Boeve BF et al (2003) Vascular dementia in a population-based autopsy study. Arch Neurol 60:569–575. https://doi.org/10.1001/archneur.60.4.569

    Article  PubMed  Google Scholar 

  79. Ferrer I (2010) Cognitive impairment of vascular origin: neuropathology of cognitive impairment of vascular origin. J Neurol Sci 299:139–149. https://doi.org/10.1016/j.jns.2010.08.039

    Article  PubMed  Google Scholar 

  80. Ishii K, Kawaguchi T, Shimada K et al (2008) Voxel-based analysis of gray matter and CSF space in idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Disord 25:329–335. https://doi.org/10.1159/000119521

    Article  PubMed  Google Scholar 

  81. Syaifullah AH, Shiino A, Fujiyoshi A et al (2021) Alcohol drinking and brain morphometry in apparently healthy community-dwelling Japanese men. Alcohol 90:57–65. https://doi.org/10.1016/j.alcohol.2020.11.006

    Article  CAS  PubMed  Google Scholar 

  82. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  83. Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16:271–278; discussion 278–284

  84. Ozzoude M, Ramirez J, Raamana PR et al (2020) Cortical Thickness estimation in individuals with cerebral small vessel disease, focal atrophy, and chronic stroke lesions. Front Neurosci 14:598868. https://doi.org/10.3389/fnins.2020.598868

    Article  PubMed  PubMed Central  Google Scholar 

  85. Debette S, Markus HS (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341:c3666. https://doi.org/10.1136/bmj.c3666

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jacobs HIL, Visser PJ, Van Boxtel MPJ et al (2012) Association between white matter hyperintensities and executive decline in mild cognitive impairment is network dependent. Neurobiol Aging 33:201.e1–8. https://doi.org/10.1016/j.neurobiolaging.2010.07.015

    Article  PubMed  Google Scholar 

  87. Choe YM, Baek H, Choi HJ et al (2022) Association between enlarged perivascular spaces and cognition in a memory clinic population. Neurology. https://doi.org/10.1212/WNL.0000000000200910.10.1212/WNL.0000000000200910

    Article  PubMed  PubMed Central  Google Scholar 

  88. Godefroy O, Spagnolo S, Roussel M, Boucart M (2010) Stroke and action slowing: mechanisms, determinants and prognosis value. Cerebrovasc Dis 29:508–514. https://doi.org/10.1159/000297968

    Article  PubMed  Google Scholar 

  89. Roussel M, Martinaud O, Hénon H, et al (2016) The behavioral and cognitive executive disorders of stroke: the GREFEX Study. PLoS One. https://doi.org/10.1371/journal.pone.0147602

Download references

Author information

Authors and Affiliations

Authors

Contributions

Daniela Andriuta: data acquisition, data and image analysis, statistics, and first draft of the manuscript. Emmanuel Wiener: data acquisition, image analysis, and revision of the manuscript. Alexandre Perron: data acquisition, image analysis, and revision of the manuscript. Elisa Ouin: data acquisition, image analysis, and revision of the manuscript. Ines Masmoudi: data acquisition and revision of the manuscript. William Thibaut: image analysis and revision of the manuscript. Jeanne Martin: image analysis and revision of the manuscript. Martine Roussel: data acquisition, data analysis, and revision of the manuscript. Jean-Marc Constans: image acquisition and revision of the manuscript. Ardalan Aarabi: revision of the manuscript. Olivier Godefroy: data and image analysis, statistics, study design, and revision of the manuscript. All co-authors agree with the conditions noted on the Authorship Agreement Form.

Corresponding author

Correspondence to Daniela Andriuta.

Ethics declarations

Conflicts of interest

The authors report no disclosures of relevance to the manuscript. Daniela Andriuta reports funding (travel and meetings) from Biogen, Roche, Teva, Novartis, Bristol-Myers Squibb, Genzyme, and Sanofi outside the submitted work. Emmanuel Wiener reports no disclosures. Alexandre Perron reports funding (travel and meetings) from Biogen, Roche, Teva, Novartis, Bristol-Myers Squibb, Genzyme, and Sanofi outside the submitted work. Elisa Ouin reports no disclosures. Ines Masmoudi reports funding (travel, meetings and boards) funding Biogen, Roche, Teva, Novartis, Bristol-Myers Squibb, Genzyme, Merck, Janssen, Pfizer and Sanofi. William Thibaut reports no disclosures. Jeanne Martin reports fundings (travel, meetings and fees payed for service to a company) from LFB biomédicaments, Biogen, UCB Pharma SA, and Jazz Pharmaceuticals outside the submitted work. Martine Roussel reports no disclosures. Jean-Marc Constans reports no disclosures. Ardalan Aarabi reports no disclosures. Olivier Godefroy reports no disclosures.

Ethical approval

Ethical approval was obtained from the local institutional review board (CNIL: N° PI2020-843-0144). The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andriuta, D., Wiener, E., Perron, A. et al. Neuroimaging determinants of cognitive impairment in the memory clinic: how important is the vascular burden?. J Neurol 271, 504–518 (2024). https://doi.org/10.1007/s00415-023-12009-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-12009-1

Keywords

Navigation