Skip to main content
Log in

Clinical and MRI features of gait and balance disorders in neurodegenerative diseases

  • Neurological Update
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Gait and balance disorders are common signs in several neurodegenerative diseases such as Parkinson’s disease, atypical parkinsonism, idiopathic normal pressure hydrocephalus, cerebrovascular disease, dementing disorders and multiple sclerosis. According to each condition, patients present with different gait and balance alterations depending on the structural and functional brain changes through the disease course. In this review, we will summarize the main clinical characteristics of gait and balance disorders in the major neurodegenerative conditions, providing an overview of the significant structural and functional MRI brain alterations underlying these deficits. We also will discuss the role of neurorehabilitation strategies in promoting brain plasticity and gait/balance improvements in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jahn K, Zwergal A, Schniepp R (2010) Gait disturbances in old age: classification, diagnosis, and treatment from a neurological perspective. Dtsch Arztebl Int 107:306–315 (quiz 316)

    PubMed  PubMed Central  Google Scholar 

  2. Jahn K, Zwergal A (2010) Imaging supraspinal locomotor control in balance disorders. Restor Neurol Neurosci 28:105–114

    PubMed  Google Scholar 

  3. Montero-Odasso M, Verghese J, Beauchet O, Hausdorff JM (2012) Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc 60:2127–2136

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mirelman A, Bonato P, Camicioli R, Ellis TD, Giladi N, Hamilton JL, Hass CJ, Hausdorff JM, Pelosin E, Almeida QJ (2019) Gait impairments in Parkinson’s disease. Lancet Neurol 18:697–708

    Article  PubMed  Google Scholar 

  5. de Souza Fortaleza AC, Mancini M, Carlson-Kuhta P, King LA, Nutt JG, Chagas EF, Freitas IFJ, Horak FB (2017) Dual task interference on postural sway, postural transitions and gait in people with Parkinson’s disease and freezing of gait. Gait Posture 56:76–81

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sarasso E, Agosta F, Piramide N, Gardoni A, Canu E, Leocadi M, Castelnovo V, Basaia S, Tettamanti A, Volonte MA, Filippi M (2021) Action observation and motor imagery improve dual task in Parkinson’s disease: a clinical/fMRI study. Mov Disord 36:2569–2582

    Article  PubMed  Google Scholar 

  7. Sarasso E, Gardoni A, Piramide N, Volonte MA, Canu E, Tettamanti A, Filippi M, Agosta F (2021) Dual-task clinical and functional MRI correlates in Parkinson’s disease with postural instability and gait disorders. Parkinsonism Relat Disord 91:88–95

    Article  CAS  PubMed  Google Scholar 

  8. Park JH, Kang YJ, Horak FB (2015) What is wrong with balance in Parkinson’s disease? J Mov Disord 8:109–114

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kelly VE, Johnson CO, McGough EL, Shumway-Cook A, Horak FB, Chung KA, Espay AJ, Revilla FJ, Devoto J, Wood-Siverio C, Factor SA, Cholerton B, Edwards KL, Peterson AL, Quinn JF, Montine TJ, Zabetian CP, Leverenz JB (2015) Association of cognitive domains with postural instability/gait disturbance in Parkinson’s disease. Parkinsonism Relat Disord 21:692–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morris R, Martini DN, Smulders K, Kelly VE, Zabetian CP, Poston K, Hiller A, Chung KA, Yang L, Hu SC, Edwards KL, Cholerton B, Grabowski TJ, Montine TJ, Quinn JF, Horak F (2019) Cognitive associations with comprehensive gait and static balance measures in Parkinson’s disease. Parkinsonism Relat Disord 69:104–110

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hoglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, Mollenhauer B, Muller U, Nilsson C, Whitwell JL, Arzberger T, Englund E, Gelpi E, Giese A, Irwin DJ, Meissner WG, Pantelyat A, Rajput A, van Swieten JC, Troakes C, Antonini A, Bhatia KP, Bordelon Y, Compta Y, Corvol JC, Colosimo C, Dickson DW, Dodel R, Ferguson L, Grossman M, Kassubek J, Krismer F, Levin J, Lorenzl S, Morris HR, Nestor P, Oertel WH, Poewe W, Rabinovici G, Rowe JB, Schellenberg GD, Seppi K, van Eimeren T, Wenning GK, Boxer AL, Golbe LI, Litvan I, Movement Disorder Society-endorsed PSPSG (2017) Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 32:853–864

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wenning GK, Stankovic I, Vignatelli L, Fanciulli A, Calandra-Buonaura G, Seppi K, Palma JA, Meissner WG, Krismer F, Berg D, Cortelli P, Freeman R, Halliday G, Hoglinger G, Lang A, Ling H, Litvan I, Low P, Miki Y, Panicker J, Pellecchia MT, Quinn N, Sakakibara R, Stamelou M, Tolosa E, Tsuji S, Warner T, Poewe W, Kaufmann H (2022) The movement disorder society criteria for the diagnosis of multiple system atrophy. Mov Disord 37:1131–1148

    Article  PubMed  PubMed Central  Google Scholar 

  13. Blomsterwall E, Svantesson U, Carlsson U, Tullberg M, Wikkelso C (2000) Postural disturbance in patients with normal pressure hydrocephalus. Acta Neurol Scand 102:284–291

    Article  CAS  PubMed  Google Scholar 

  14. Stolze H, Kuhtz-Buschbeck JP, Drucke H, Johnk K, Illert M, Deuschl G (2001) Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson’s disease. J Neurol Neurosurg Psychiatry 70:289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roblot P, Mollier O, Ollivier M, Gallice T, Planchon C, Gimbert E, Danet M, Renault S, Auzou N, Laurens B, Jecko V (2021) Communicating chronic hydrocephalus: a review. Rev Med Interne 42:781–788

    Article  CAS  PubMed  Google Scholar 

  16. Lilja-Lund O, Nyberg L, Maripuu M, Laurell K (2022) Dual-task performance in older adults with and without idiopathic normal pressure hydrocephalus. Front Aging Neurosci 14:904194

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cohen JA, Verghese J (2019) Gait and dementia. Handb Clin Neurol 167:419–427

    Article  PubMed  Google Scholar 

  18. de Havenon A, Meyer C, McNally JS, Alexander M, Chung L (2019) Subclinical cerebrovascular disease: epidemiology and treatment. Curr Atheroscler Rep 21:39

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang W, Low LF, Schwenk M, Mills N, Gwynn JD, Clemson L (2019) Review of gait, cognition, and fall risks with implications for fall prevention in older adults with dementia. Dement Geriatr Cogn Disord 48:17–29

    Article  PubMed  Google Scholar 

  20. Cameron MH, Nilsagard Y (2018) Balance, gait, and falls in multiple sclerosis. Handb Clin Neurol 159:237–250

    Article  PubMed  Google Scholar 

  21. Comber L, Galvin R, Coote S (2017) Gait deficits in people with multiple sclerosis: a systematic review and meta-analysis. Gait Posture 51:25–35

    Article  PubMed  Google Scholar 

  22. Lewis SJ, Barker RA (2009) Understanding the dopaminergic deficits in Parkinson’s disease: insights into disease heterogeneity. J Clin Neurosci 16:620–625

    Article  CAS  PubMed  Google Scholar 

  23. Boonstra JT, Michielse S, Temel Y, Hoogland G, Jahanshahi A (2021) Neuroimaging detectable differences between Parkinson’s disease motor subtypes: a systematic review. Mov Disord Clin Pract 8:175–192

    Article  PubMed  Google Scholar 

  24. Lehericy S, Vaillancourt DE, Seppi K, Monchi O, Rektorova I, Antonini A, McKeown MJ, Masellis M, Berg D, Rowe JB, Lewis SJG, Williams-Gray CH, Tessitore A, Siebner HR, International P, Movement Disorder Society -Neuroimaging Study G (2017) The role of high-field magnetic resonance imaging in parkinsonian disorders: pushing the boundaries forward. Mov Disord 32:510–525

    Article  PubMed  Google Scholar 

  25. Bohnen NI, Yarnall AJ, Weil RS, Moro E, Moehle MS, Borghammer P, Bedard MA, Albin RL (2022) Cholinergic system changes in Parkinson’s disease: emerging therapeutic approaches. Lancet Neurol 21:381–392

    Article  CAS  PubMed  Google Scholar 

  26. Pasquini J, Brooks DJ, Pavese N (2021) The cholinergic brain in Parkinson’s disease. Mov Disord Clin Pract 8:1012–1026

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wilson J, Yarnall AJ, Craig CE, Galna B, Lord S, Morris R, Lawson RA, Alcock L, Duncan GW, Khoo TK, O’Brien JT, Burn DJ, Taylor JP, Ray NJ, Rochester L (2021) Cholinergic basal forebrain volumes predict gait decline in Parkinson’s disease. Mov Disord 36:611–621

    Article  CAS  PubMed  Google Scholar 

  28. Prange S, Metereau E, Thobois S (2019) Structural imaging in Parkinson’s disease: new developments. Curr Neurol Neurosci Rep 19:50

    Article  PubMed  Google Scholar 

  29. Craig CE, Jenkinson NJ, Brittain JS, Grothe MJ, Rochester L, Silverdale M, Alho A, Alho EJL, Holmes PS, Ray NJ (2020) Pedunculopontine nucleus microstructure predicts postural and gait symptoms in Parkinson’s disease. Mov Disord 35:1199–1207

    Article  CAS  PubMed  Google Scholar 

  30. Nazmuddin M, van Dalen JW, Borra RJH, Stormezand GN, van der Horn HJ, van der Zee S, Boertien J, van Laar T (2021) Postural and gait symptoms in de novo Parkinson’s disease patients correlate with cholinergic white matter pathology. Parkinsonism Relat Disord 93:43–49

    Article  CAS  PubMed  Google Scholar 

  31. Canu E, Agosta F, Sarasso E, Volonte MA, Basaia S, Stojkovic T, Stefanova E, Comi G, Falini A, Kostic VS, Gatti R, Filippi M (2015) Brain structural and functional connectivity in Parkinson’s disease with freezing of gait. Hum Brain Mapp 36:5064–5078

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fling BW, Cohen RG, Mancini M, Nutt JG, Fair DA, Horak FB (2013) Asymmetric pedunculopontine network connectivity in parkinsonian patients with freezing of gait. Brain 136:2405–2418

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lewis SJ, Barker RA (2009) A pathophysiological model of freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 15:333–338

    Article  PubMed  Google Scholar 

  34. Weiss D, Schoellmann A, Fox MD, Bohnen NI, Factor SA, Nieuwboer A, Hallett M, Lewis SJG (2020) Freezing of gait: understanding the complexity of an enigmatic phenomenon. Brain 143:14–30

    Article  PubMed  Google Scholar 

  35. Shine JM, Matar E, Ward PB, Frank MJ, Moustafa AA, Pearson M, Naismith SL, Lewis SJ (2013) Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain 136:3671–3681

    Article  PubMed  Google Scholar 

  36. Bohnen NI, Jahn K (2013) Imaging: what can it tell us about parkinsonian gait? Mov Disord 28:1492–1500

    Article  PubMed  PubMed Central  Google Scholar 

  37. Basaia S, Agosta F, Francia A, Cividini C, Balestrino R, Stojkovic T, Stankovic I, Markovic V, Sarasso E, Gardoni A, De Micco R, Albano L, Stefanova E, Kostic VS, Filippi M (2022) Cerebro-cerebellar motor networks in clinical subtypes of Parkinson’s disease. NPJ Parkinsons Dis 8:113

    Article  PubMed  PubMed Central  Google Scholar 

  38. Filippi M, Basaia S, Sarasso E, Stojkovic T, Stankovic I, Fontana A, Tomic A, Piramide N, Stefanova E, Markovic V, Kostic VS, Agosta F (2021) Longitudinal brain connectivity changes and clinical evolution in Parkinson’s disease. Mol Psychiatry 26:5429–5440

    Article  PubMed  Google Scholar 

  39. Filippi M, Sarasso E, Piramide N, Stojkovic T, Stankovic I, Basaia S, Fontana A, Tomic A, Markovic V, Stefanova E, Kostic VS, Agosta F (2020) Progressive brain atrophy and clinical evolution in Parkinson’s disease. Neuroimage Clin 28:102374

    Article  PubMed  PubMed Central  Google Scholar 

  40. Leocadi M, Canu E, Donzuso G, Stojkovic T, Basaia S, Kresojevic N, Stankovic I, Sarasso E, Piramide N, Tomic A, Markovic V, Petrovic I, Stefanova E, Kostic VS, Filippi M, Agosta F (2022) Longitudinal clinical, cognitive, and neuroanatomical changes over 5 years in GBA-positive Parkinson’s disease patients. J Neurol 269:1485–1500

    Article  PubMed  Google Scholar 

  41. Sarasso E, Agosta F, Piramide N, Filippi M (2021) Progression of grey and white matter brain damage in Parkinson’s disease: a critical review of structural MRI literature. J Neurol 268:3144–3179

    Article  PubMed  Google Scholar 

  42. Scamarcia PG, Agosta F, Spinelli EG, Basaia S, Stojkovic T, Stankovic I, Sarasso E, Canu E, Markovic V, Petrovic I, Stefanova E, Pagani E, Kostic VS, Filippi M (2022) Longitudinal white matter damage evolution in Parkinson’s disease. Mov Disord 37:315–324

    Article  PubMed  Google Scholar 

  43. Filippi M, Sarasso E, Agosta F (2019) Resting-state functional MRI in Parkinsonian syndromes. Mov Disord Clin Pract 6:104–117

    Article  PubMed  PubMed Central  Google Scholar 

  44. Maidan I, Rosenberg-Katz K, Jacob Y, Giladi N, Deutsch JE, Hausdorff JM, Mirelman A (2016) Altered brain activation in complex walking conditions in patients with Parkinson’s disease. Parkinsonism Relat Disord 25:91–96

    Article  CAS  PubMed  Google Scholar 

  45. Piramide N, Agosta F, Sarasso E, Canu E, Volonte MA, Filippi M (2020) Brain activity during lower limb movements in Parkinson’s disease patients with and without freezing of gait. J Neurol 267:1116–1126

    Article  PubMed  Google Scholar 

  46. Bharti K, Suppa A, Tommasin S, Zampogna A, Pietracupa S, Berardelli A, Pantano P (2019) Neuroimaging advances in Parkinson’s disease with freezing of gait: a systematic review. Neuroimage Clin 24:102059

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vesely B, Antonini A, Rektor I (2016) The contribution of white matter lesions to Parkinson’s disease motor and gait symptoms: a critical review of the literature. J Neural Transm (Vienna) 123:241–250

    Article  CAS  PubMed  Google Scholar 

  48. Hall JM, Ehgoetz Martens KA, Walton CC, O’Callaghan C, Keller PE, Lewis SJ, Moustafa AA (2016) Diffusion alterations associated with Parkinson’s disease symptomatology: a review of the literature. Parkinsonism Relat Disord 33:12–26

    Article  PubMed  Google Scholar 

  49. Ehgoetz Martens KA, Hall JM, Georgiades MJ, Gilat M, Walton CC, Matar E, Lewis SJG, Shine JM (2018) The functional network signature of heterogeneity in freezing of gait. Brain 141:1145–1160

    Article  PubMed  Google Scholar 

  50. Sarasso E, Agosta F, Piramide N, Canu E, Volonte MA, Filippi M (2021) Brain activity of the emotional circuit in Parkinson’s disease patients with freezing of gait. Neuroimage Clin 30:102649

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fasano A, Herman T, Tessitore A, Strafella AP, Bohnen NI (2015) Neuroimaging of freezing of gait. J Parkinsons Dis 5:241–254

    Article  PubMed  PubMed Central  Google Scholar 

  52. Agosta F, Gatti R, Sarasso E, Volonte MA, Canu E, Meani A, Sarro L, Copetti M, Cattrysse E, Kerckhofs E, Comi G, Falini A, Filippi M (2017) Brain plasticity in Parkinson’s disease with freezing of gait induced by action observation training. J Neurol 264:88–101

    Article  PubMed  Google Scholar 

  53. Shine JM, Matar E, Ward PB, Bolitho SJ, Gilat M, Pearson M, Naismith SL, Lewis SJ (2013) Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in Parkinson’s disease. Brain 136:1204–1215

    Article  PubMed  Google Scholar 

  54. Snijders AH, Leunissen I, Bakker M, Overeem S, Helmich RC, Bloem BR, Toni I (2011) Gait-related cerebral alterations in patients with Parkinson’s disease with freezing of gait. Brain 134:59–72

    Article  PubMed  Google Scholar 

  55. Herz DM, Meder D, Camilleri JA, Eickhoff SB, Siebner HR (2021) Brain motor network changes in Parkinson’s disease: evidence from meta-analytic modeling. Mov Disord 36:1180–1190

    Article  PubMed  PubMed Central  Google Scholar 

  56. Drucker JH, Sathian K, Crosson B, Krishnamurthy V, McGregor KM, Bozzorg A, Gopinath K, Krishnamurthy LC, Wolf SL, Hart AR, Evatt M, Corcos DM, Hackney ME (2019) Internally guided lower limb movement recruits compensatory cerebellar activity in people with Parkinson’s disease. Front Neurol 10:537

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gao L, Zhang J, Hou Y, Hallett M, Chan P, Wu T (2017) The cerebellum in dual-task performance in Parkinson’s disease. Sci Rep 7:45662

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gilat M, Shine JM, Walton CC, O’Callaghan C, Hall JM, Lewis SJG (2015) Brain activation underlying turning in Parkinson’s disease patients with and without freezing of gait: a virtual reality fMRI study. NPJ Parkinsons Dis 1:15020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vervoort G, Heremans E, Bengevoord A, Strouwen C, Nackaerts E, Vandenberghe W, Nieuwboer A (2016) Dual-task-related neural connectivity changes in patients with Parkinson’ disease. Neuroscience 317:36–46

    Article  CAS  PubMed  Google Scholar 

  60. Mirelman A, Rochester L, Maidan I, Del Din S, Alcock L, Nieuwhof F, Rikkert MO, Bloem BR, Pelosin E, Avanzino L, Abbruzzese G, Dockx K, Bekkers E, Giladi N, Nieuwboer A, Hausdorff JM (2016) Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial. Lancet 388:1170–1182

    Article  PubMed  Google Scholar 

  61. Sarasso E, Gardoni A, Tettamanti A, Agosta F, Filippi M, Corbetta D (2022) Virtual reality balance training to improve balance and mobility in Parkinson’s disease: a systematic review and meta-analysis. J Neurol 269:1873–1888

    Article  PubMed  Google Scholar 

  62. Sarasso E, Gemma M, Agosta F, Filippi M, Gatti R (2015) Action observation training to improve motor function recovery: a systematic review. Arch Physiother 5:14

    Article  PubMed  PubMed Central  Google Scholar 

  63. D’Cruz N, Vervoort G, Chalavi S, Dijkstra BW, Gilat M, Nieuwboer A (2021) Thalamic morphology predicts the onset of freezing of gait in Parkinson’s disease. NPJ Parkinsons Dis 7:20

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sarasso E, Basaia S, Cividini C, Stojkovic T, Stankovic I, Piramide N, Tomic A, Markovic V, Stefanova E, Kostic VS, Filippi M, Agosta F (2022) MRI biomarkers of freezing of gait development in Parkinson’s disease. NPJ Parkinsons Dis 8:158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Agosta F, Sarasso E, Filippi M (2018) Functional MRI in atypical Parkinsonisms. Int Rev Neurobiol 142:149–173

    Article  PubMed  Google Scholar 

  66. Sintini I, Kaufman K, Botha H, Martin PR, Loushin SR, Senjem ML, Reid RI, Schwarz CG, Jack CR Jr, Lowe VJ, Josephs KA, Whitwell JL, Ali F (2021) Neuroimaging correlates of gait abnormalities in progressive supranuclear palsy. Neuroimage Clin 32:102850

    Article  PubMed  PubMed Central  Google Scholar 

  67. Alster P, Madetko N, Koziorowski D, Friedman A (2020) Progressive Supranuclear palsy-parkinsonism predominant (PSP-P)—a clinical challenge at the boundaries of PSP and Parkinson’s Disease (PD). Front Neurol 11:180

    Article  PubMed  PubMed Central  Google Scholar 

  68. Campabadal A, Abos A, Segura B, Monte-Rubio G, Perez-Soriano A, Giraldo DM, Munoz E, Compta Y, Junque C, Marti MJ (2022) Differentiation of multiple system atrophy subtypes by gray matter atrophy. J Neuroimaging 32:80–89

    Article  PubMed  Google Scholar 

  69. Bradley WG Jr (2016) Magnetic resonance imaging of normal pressure hydrocephalus. Semin Ultrasound CT MR 37:120–128

    Article  PubMed  Google Scholar 

  70. Hoza D, Vlasak A, Horinek D, Sames M, Alfieri A (2015) DTI-MRI biomarkers in the search for normal pressure hydrocephalus aetiology: a review. Neurosurg Rev 38:239–244 (discussion 244)

    Article  PubMed  Google Scholar 

  71. Siasios I, Kapsalaki EZ, Fountas KN, Fotiadou A, Dorsch A, Vakharia K, Pollina J, Dimopoulos V (2016) The role of diffusion tensor imaging and fractional anisotropy in the evaluation of patients with idiopathic normal pressure hydrocephalus: a literature review. Neurosurg Focus 41:E12

    Article  PubMed  Google Scholar 

  72. Chen J, He W, Zhang X, Lv M, Zhou X, Yang X, Wei H, Ma H, Li H, Xia J (2022) Value of MRI-based semi-quantitative structural neuroimaging in predicting the prognosis of patients with idiopathic normal pressure hydrocephalus after shunt surgery. Eur Radiol

  73. Grazzini I, Venezia D, Cuneo GL (2021) The role of diffusion tensor imaging in idiopathic normal pressure hydrocephalus: a literature review. Neuroradiol J 34:55–69

    Article  PubMed  Google Scholar 

  74. Kang K, Han J, Lee SW, Jeong SY, Lim YH, Lee JM, Yoon U (2020) Abnormal cortical thickening and thinning in idiopathic normal-pressure hydrocephalus. Sci Rep 10:21213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lv M, Yang X, Zhou X, Chen J, Wei H, Du D, Lin H, Xia J (2022) Gray matter volume of cerebellum associated with idiopathic normal pressure hydrocephalus: a cross-sectional analysis. Front Neurol 13:922199

    Article  PubMed  PubMed Central  Google Scholar 

  76. Carlsen JF, Munch TN, Hansen AE, Hasselbalch SG, Rykkje AM (2022) Can preoperative brain imaging features predict shunt response in idiopathic normal pressure hydrocephalus? A PRISMA review. Neuroradiology 64:2119–2133

    Article  PubMed  Google Scholar 

  77. Cannistraro RJ, Badi M, Eidelman BH, Dickson DW, Middlebrooks EH, Meschia JF (2019) CNS small vessel disease: a clinical review. Neurology 92:1146–1156

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pasi M, van Uden IW, Tuladhar AM, de Leeuw FE, Pantoni L (2016) White matter microstructural damage on diffusion tensor imaging in cerebral small vessel disease: clinical consequences. Stroke 47:1679–1684

    Article  PubMed  Google Scholar 

  79. de Laat KF, van den Berg HA, van Norden AG, Gons RA, Olde Rikkert MG, de Leeuw FE (2011) Microbleeds are independently related to gait disturbances in elderly individuals with cerebral small vessel disease. Stroke 42:494–497

    Article  PubMed  Google Scholar 

  80. Allali G, Blumen HM, Devanne H, Pirondini E, Delval A, Van De Ville D (2018) Brain imaging of locomotion in neurological conditions. Neurophysiol Clin 48:337–359

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ide R, Ota M, Hada Y, Watanabe S, Takahashi T, Tamura M, Nemoto K, Arai T (2022) Dynamic balance deficit and the neural network in Alzheimer’s disease and mild cognitive impairment. Gait Posture 93:252–258

    Article  PubMed  Google Scholar 

  82. Hidalgo de la Cruz M, Valsasina P, Meani A, Gallo A, Gobbi C, Bisecco A, Tedeschi G, Zecca C, Rocca MA, Filippi M (2022) Differential association of cortical, subcortical and spinal cord damage with multiple sclerosis disability milestones: a multiparametric MRI study. Mult Scler 28:406–417

    Article  CAS  PubMed  Google Scholar 

  83. Brandstadter R, Ayeni O, Krieger SC, Harel NY, Escalon MX, Katz Sand I, Leavitt VM, Fabian MT, Buyukturkoglu K, Klineova S, Riley CS, Lublin FD, Miller AE, Sumowski JF (2020) Detection of subtle gait disturbance and future fall risk in early multiple sclerosis. Neurology 94:e1395–e1406

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kalron A, Allali G, Achiron A (2018) Neural correlates of gait variability in people with multiple sclerosis with fall history. Eur J Neurol 25:1243–1249

    Article  CAS  PubMed  Google Scholar 

  85. Cofre Lizama LE, Strik M, Van der Walt A, Kilpatrick TJ, Kolbe SC, Galea MP (2022) Gait stability reflects motor tracts damage at early stages of multiple sclerosis. Mult Scler 28:1773–1782

    Article  CAS  PubMed  Google Scholar 

  86. Peterson DS, Gera G, Horak FB, Fling BW (2016) Supraspinal control of automatic postural responses in people with multiple sclerosis. Gait Posture 47:92–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Iandolo R, Bommarito G, Falcitano L, Schiavi S, Piaggio N, Mancardi GL, Casadio M, Inglese M (2020) Position sense deficits at the lower limbs in early multiple sclerosis: clinical and neural correlates. Neurorehabil Neural Repair 34:260–270

    Article  PubMed  Google Scholar 

  88. Li Y, Jewells V, Kim M, Chen Y, Moon A, Armao D, Troiani L, Markovic-Plese S, Lin W, Shen D (2013) Diffusion tensor imaging based network analysis detects alterations of neuroconnectivity in patients with clinically early relapsing-remitting multiple sclerosis. Hum Brain Mapp 34:3376–3391

    Article  PubMed  Google Scholar 

  89. Anderson VM, Wheeler-Kingshott CA, Abdel-Aziz K, Miller DH, Toosy A, Thompson AJ, Ciccarelli O (2011) A comprehensive assessment of cerebellar damage in multiple sclerosis using diffusion tractography and volumetric analysis. Mult Scler 17:1079–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cocozza S, Petracca M, Mormina E, Buyukturkoglu K, Podranski K, Heinig MM, Pontillo G, Russo C, Tedeschi E, Russo CV, Costabile T, Lanzillo R, Harel A, Klineova S, Miller A, Brunetti A, Morra VB, Lublin F, Inglese M (2017) Cerebellar lobule atrophy and disability in progressive MS. J Neurol Neurosurg Psychiatry 88:1065–1072

    Article  PubMed  Google Scholar 

  91. Amatya B, Khan F, Galea M (2019) Rehabilitation for people with multiple sclerosis: an overview of Cochrane reviews. Cochrane Database Syst Rev 1:CD012732

    PubMed  Google Scholar 

  92. Canu E, Sarasso E, Filippi M, Agosta F (2018) Effects of pharmacological and nonpharmacological treatments on brain functional magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment: a critical review. Alzheimers Res Ther 10:21

    Article  PubMed  PubMed Central  Google Scholar 

  93. Prosperini L, Fanelli F, Petsas N, Sbardella E, Tona F, Raz E, Fortuna D, De Angelis F, Pozzilli C, Pantano P (2014) Multiple sclerosis: changes in microarchitecture of white matter tracts after training with a video game balance board. Radiology 273:529–538

    Article  PubMed  Google Scholar 

  94. Ibrahim I, Tintera J, Skoch A, Jiru F, Hlustik P, Martinkova P, Zvara K, Rasova K (2011) Fractional anisotropy and mean diffusivity in the corpus callosum of patients with multiple sclerosis: the effect of physiotherapy. Neuroradiology 53:917–926

    Article  PubMed  Google Scholar 

  95. Tavazzi E, Bergsland N, Cattaneo D, Gervasoni E, Lagana MM, Dipasquale O, Grosso C, Saibene FL, Baglio F, Rovaris M (2018) Effects of motor rehabilitation on mobility and brain plasticity in multiple sclerosis: a structural and functional MRI study. J Neurol 265:1393–1401

    Article  PubMed  Google Scholar 

  96. Maidan I, Rosenberg-Katz K, Jacob Y, Giladi N, Hausdorff JM, Mirelman A (2017) Disparate effects of training on brain activation in Parkinson disease. Neurology 89:1804–1810

    Article  PubMed  Google Scholar 

Download references

Funding

This study was partially supported by a grant from Ministero della Salute (GR-2018-12366005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Agosta.

Ethics declarations

Conflicts of interest

E. Sarasso has nothing to disclose. M. Filippi is the Editor-in-Chief of the Journal of Neurology and Associate Editor of Human Brain Mapping. He has received compensation for consulting services and/or speaking activities from Almiral, Alexion, Bayer, Biogen, Celgene, Eli Lilly, Genzyme, Merck-Serono, Novartis, Roche, Sanofi, Takeda, and Teva Pharmaceutical Industries, and receives research support from Biogen Idec, Merck-Serono, Novartis, Roche, Teva Pharmaceutical Industries, Italian Ministry of Health, Fondazione Italiana Sclerosi Multipla, and ARiSLA (Fondazione Italiana di Ricerca per la SLA). F. Agosta is the Associate Editor of NeuroImage: Clinical, has received speaker honoraria from Biogen Idec, Roche and Zambon, and receives or has received research supports from the Italian Ministry of Health, AriSLA (Fondazione Italiana di Ricerca per la SLA), the European Research Council and Foundation Research on Alzheimer Disease.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarasso, E., Filippi, M. & Agosta, F. Clinical and MRI features of gait and balance disorders in neurodegenerative diseases. J Neurol 270, 1798–1807 (2023). https://doi.org/10.1007/s00415-022-11544-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-022-11544-7

Keywords

Navigation