Skip to main content
Log in

Modulation of spontaneous motor unit potentials by a new motor cortical magnetic stimulation method in amyotrophic lateral sclerosis

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Patients with amyotrophic lateral sclerosis (ALS) show altered cortical excitability. In this study, we measure modulation of spontaneous motor unit potentials (sMUPs) in hand muscles by multifocal cortical stimulation with a newly developed wearable transcranial rotating permanent magnet stimulator (TRPMS).

Methods

We conducted cross-sectional and longitudinal electromyographic assessments in 40 and 20 ALS patients, respectively, of the stimulation-induced peak increase in the count of sMUPs in two hand muscles modulated by unilateral TRPMS stimulation of the primary motor cortex. We measured peak sMUP counts during several short sessions consisting of 10 stimuli over 60 s and 30 s post-stimulation periods. The longitudinal component involved an initial assessment at an early stage of the disease and up to five follow-up assessments at least 3 months apart.

Results

TRPMS stimulation produced no device-related adverse effects. It showed an inverted V-shaped modulation of the peak sMUP counts as a function of ALS functional rating scale revised scores. The ratios of ALS subjects showing peak sMUP count increases between early and intermediate stages (χ2 = 4.086, df = 1, p = 0.043) and intermediate and late stages (χ2 = 4.29, df = 1, p = 0.038) in cross-sectional data were significantly different. Longitudinal assessment also produced a significant (z = 2.31, p = 0.021) result, with all subjects showing a post-initial visit increase in peak sMUP counts.

Conclusions

These results are consistent with delayed onset of upper motor neuronal dysfunction with respect to onset of clinical features. However, the above results need to be confirmed in a larger sample of patients and with multiple lines of evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Attarian S, Azulay JP, Lardillier D, Verschueren A, Pouget J (2005) Transcranial magnetic stimulation in lower motor neuron diseases. Clin Neurophysiol 116:35–42

    Article  CAS  PubMed  Google Scholar 

  2. Bento-Abreu A, Van Damme P, Van Den Bosch L, Robberecht W (2010) The neurobiology of amyotrophic lateral sclerosis. Eur J Neurosci 31:2247–2265

    Article  PubMed  Google Scholar 

  3. Berardelli A, Inghilleri M, Formisano R, Accornero N, Manfredi M (1987) Stimulation of motor tracts in motor neuron disease. J Neurol Neurosurg Psychiatry 50:732–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Campbell I (2007) Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample recommendations. Stat Med 26:3661–3675

    Article  PubMed  Google Scholar 

  5. Caramia MD, Cicinelli P, Paradiso C, Mariorenzi R, Zarola F, Bernardi G, Rossini PM (1991) ’Excitability changes of muscular responses to magnetic brain stimulation in patients with central motor disorders. Electroencephalogr Clin Neurophysiol 81:243–250

    Article  CAS  PubMed  Google Scholar 

  6. Carvalho MD, Swash M (2009) Awaji diagnostic algorithm increases sensitivity of El Escorial criteria for ALS diagnosis. Amyotroph Lateral Scler 10:53–57

    Article  PubMed  Google Scholar 

  7. Cathcart SJ, Appel SH, Peterson LE, Greene EP, Powell SZ, Arumanayagam AS, Rivera AL, Cykowski MD (2021) Fast Progression in amyotrophic lateral sclerosis is associated with greater TDP-43 burden in spinal cord. J Neuropathol Exp Neurol 80:754–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chiu D, McCane CD, Lee J, John B, Nguyen L, Butler K, Gadhia R, Misra V, Volpi JJ, Verma A, Helekar SA (2020) Multifocal transcranial stimulation in chronic ischemic stroke: A phase 1/2a randomized trial. J Stroke Cerebrovasc Dis: The Off J Natl Stroke Assoc 29:104816

    Article  Google Scholar 

  9. Chou SM, Norris FH (1993) Amyotrophic lateral sclerosis: lower motor neuron disease spreading to upper motor neurons. Muscle Nerve 16:864–869

    Article  CAS  PubMed  Google Scholar 

  10. Civardi C, Collini A, Mazzini L, Monaco F, Geda C (2020) Single-pulse transcranial magnetic stimulation in amyotrophic lateral sclerosis. Muscle Nerve 61:330–337

    Article  PubMed  Google Scholar 

  11. de Carvalho M, Turkman A, Swash M (2003) Motor responses evoked by transcranial magnetic stimulation and peripheral nerve stimulation in the ulnar innervation in amyotrophic lateral sclerosis: the effect of upper and lower motor neuron lesion. J Neurol Sci 210:83–90

    Article  PubMed  Google Scholar 

  12. Dengler R, Konstanzer A, Kuther G, Hesse S, Wolf W, Struppler A (1990) Amyotrophic lateral sclerosis: macro-EMG and twitch forces of single motor units. Muscle Nerve 13:545–550

    Article  CAS  PubMed  Google Scholar 

  13. Desiato MT, Bernardi G, Hagi HA, Boffa L, Caramia MD (2002) Transcranial magnetic stimulation of motor pathways directed to muscles supplied by cranial nerves in amyotrophic lateral sclerosis. Clin Neurophysiol 113:132–140

    Article  PubMed  Google Scholar 

  14. Desiato MT, Caramia MD (1997) Towards a neurophysiological marker of amyotrophic lateral sclerosis as revealed by changes in cortical excitability. Electroencephalogr Clin Neurophysiol 105:1–7

    Article  CAS  PubMed  Google Scholar 

  15. Douglass CP, Kandler RH, Shaw PJ, McDermott CJ (2010) An evaluation of neurophysiological criteria used in the diagnosis of motor neuron disease. J Neurol Neurosurg Psychiatry 81:646–649

    Article  CAS  PubMed  Google Scholar 

  16. Eisen A, Pant B, Stewart H (1993) Cortical excitability in amyotrophic lateral sclerosis: a clue to pathogenesis. Can J Neurol Sci 20:11–16

    Article  CAS  PubMed  Google Scholar 

  17. Gould TW, Buss RR, Vinsant S, Prevette D, Sun W, Knudson CM, Milligan CE, Oppenheim RW (2006) Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALS. J Neurosci 26:8774–8786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gower WR (1886–1888) Manual of Diseases of the Nervous System. Churchill, London, UK

  19. Greene E, Thonhoff J, John BS, Rosenfield DB, Helekar SA (2021) Multifocal noninvasive magnetic stimulation of the primary motor cortex in type 1 myotonic dystrophy -a proof of concept pilot study. J Neuromuscul Dis 8:963–972

    Article  PubMed  Google Scholar 

  20. Helekar S, Convento S, Joseph E, John B, Shannon C, Mathew J, Yau J (2019) Modulation of cortical excitability and function by rapid rotation of strong permanent magnets in a wearable brain stimulator. Neuromodulation 22:7, e346

    Google Scholar 

  21. Helekar SA, Convento S, Nguyen L, John BS, Patel A, Yau JM, Voss HU (2018) The strength and spread of the electric field induced by transcranial rotating permanent magnet stimulation in comparison with conventional transcranial magnetic stimulation. J Neurosci Methods 309:153–160

    Article  CAS  PubMed  Google Scholar 

  22. Helekar SA, Voss HU (2016) Transcranial brain stimulation with rapidly spinning high-field permanent magnets. IEEE Access 4:2520–2528

    Article  Google Scholar 

  23. Higashihara M, Pavey N, van den Bos M, Menon P, Kiernan MC, Vucic S (2021) Association of cortical hyperexcitability and cognitive impairment in patients with amyotrophic lateral sclerosis. Neurology 96:e2090–e2097

    Article  CAS  PubMed  Google Scholar 

  24. Inghilleri M, Iacovelli E (2011) Clinical neurophysiology in ALS. Arch Ital Biol 149:57–63

    PubMed  Google Scholar 

  25. Johnston CA, Stanton BR, Turner MR, Gray R, Blunt AH, Butt D, Ampong MA, Shaw CE, Leigh PN, Al-Chalabi A (2006) Amyotrophic lateral sclerosis in an urban setting: a population based study of inner city London. J Neurol 253:1642–1643

    Article  PubMed  Google Scholar 

  26. Khavari R, Tran K, Helekar SA, Shi Z, Karmonik C, Rajab H, John B, Jalali A, Boone T (2021) Noninvasive, individualized cortical modulation using transcranial rotating permanent magnet stimulator for voiding dysfunction in women with multiple sclerosis: a pilot trial. J Urol. https://doi.org/10.1097/JU0000-0000-0000-2297

    Article  PubMed  Google Scholar 

  27. Kiernan JA, Hudson AJ (1991) Changes in sizes of cortical and lower motor neurons in amyotrophic lateral sclerosis. Brain 114(Pt 2):843–853

    Article  PubMed  Google Scholar 

  28. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955

    Article  CAS  PubMed  Google Scholar 

  29. Logroscino G, Traynor BJ, Hardiman O, Chio A, Mitchell D, Swingler RJ, Millul A, Benn E, Beghi E (2010) Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry 81:385–390

    Article  PubMed  Google Scholar 

  30. Mills KR, Nithi KA (1998) Peripheral and central motor conduction in amyotrophic lateral sclerosis. J Neurol Sci 159:82–87

    Article  CAS  PubMed  Google Scholar 

  31. Miscio G, Pisano F, Mora G, Mazzini L (1999) Motor neuron disease: usefulness of transcranial magnetic stimulation in improving the diagnosis. Clin Neurophysiol 110:975–981

    Article  CAS  PubMed  Google Scholar 

  32. Pagani MR, Reisin RC, Uchitel OD (2006) Calcium signaling pathways mediating synaptic potentiation triggered by amyotrophic lateral sclerosis IgG in motor nerve terminals. J Neurosci 26:2661–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pamphlett R, Kril J, Hng TM (1995) Motor neuron disease: a primary disorder of corticomotoneurons? Muscle Nerve 18:314–318

    Article  CAS  PubMed  Google Scholar 

  34. Pouget J, Trefouret S, Attarian S (2000) Transcranial magnetic stimulation (TMS): compared sensitivity of different motor response parameters in ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 1(Suppl 2):S45-49

    Article  PubMed  Google Scholar 

  35. Prout AJ, Eisen AA (1994) The cortical silent period and amyotrophic lateral sclerosis. Muscle Nerve 17:217–223

    Article  CAS  PubMed  Google Scholar 

  36. Pun S, Santos AF, Saxena S, Xu L, Caroni P (2006) Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 9:408–419

    Article  CAS  PubMed  Google Scholar 

  37. Richardson JT (2011) The analysis of 2 x 2 contingency tables–yet again. Stat Med 30:890 (author reply 891-892)

    Article  PubMed  Google Scholar 

  38. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700

    Article  CAS  PubMed  Google Scholar 

  39. Salerno A, Carlander B, Camu W, Georgesco M (1996) Motor evoked potentials (MEPs): evaluation of the different types of responses in amyotrophic lateral sclerosis and primary lateral sclerosis. Electromyogr Clin Neurophysiol 36:361–368

    CAS  PubMed  Google Scholar 

  40. Schanz O, Bageac D, Braun L, Traynor BJ, Lehky TJ, Floeter MK (2016) Cortical hyperexcitability in patients with C9ORF72 mutations: relationship to phenotype. Muscle Nerve 54:264–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sorenson EJ (2012) The electrophysiology of the motor neuron diseases. Neurol Clin 30:605–620

    Article  PubMed  Google Scholar 

  42. Triggs WJ, Menkes D, Onorato J, Yan RS, Young MS, Newell K, Sander HW, Soto O, Chiappa KH, Cros D (1999) Transcranial magnetic stimulation identifies upper motor neuron involvement in motor neuron disease. Neurology 53:605–611

    Article  CAS  PubMed  Google Scholar 

  43. Urban PP, Vogt T, Hopf HC (1998) Corticobulbar tract involvement in amyotrophic lateral sclerosis. A transcranial magnetic stimulation study. Brain 121(Pt 6):1099–1108

    Article  PubMed  Google Scholar 

  44. Vucic S, Cheah BC, Krishnan AV, Burke D, Kiernan MC (2009) The effects of alterations in conditioning stimulus intensity on short interval intracortical inhibition. Brain Res 1273:39–47

    Article  CAS  PubMed  Google Scholar 

  45. Vucic S, Kiernan MC (2008) Cortical excitability testing distinguishes Kennedy’s disease from amyotrophic lateral sclerosis. Clin Neurophysiol 119:1088–1096

    Article  PubMed  Google Scholar 

  46. Vucic S, Kiernan MC (2006) Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain 129:2436–2446

    Article  PubMed  Google Scholar 

  47. Vucic S, Kiernan MC (2009) Pathophysiology of neurodegeneration in familial amyotrophic lateral sclerosis. Curr Mol Med 9:255–272

    Article  CAS  PubMed  Google Scholar 

  48. Vucic S, Kiernan MC (2013) Utility of transcranial magnetic stimulation in delineating amyotrophic lateral sclerosis pathophysiology. Handb Clin Neurol 116:561–575

    Article  PubMed  Google Scholar 

  49. Vucic S, Nicholson GA, Kiernan MC (2008) Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain 131:1540–1550

    Article  PubMed  Google Scholar 

  50. Vucic S, Winhammar JM, Rowe DB, Kiernan MC (2010) Corticomotoneuronal function in asymptomatic SOD-1 mutation carriers. Clin Neurophysiol 121:1781–1785

    Article  PubMed  Google Scholar 

  51. Vucic S, Ziemann U, Eisen A, Hallett M, Kiernan MC (2013) Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights. J Neurol Neurosurg Psychiatry 84:1161–1170

    Article  PubMed  Google Scholar 

  52. Wassermann EM, Zimmermann T (2012) Transcranial magnetic brain stimulation: therapeutic promises and scientific gaps. Pharmacol Ther 133:98–107

    Article  CAS  PubMed  Google Scholar 

  53. Zanette G, Tamburin S, Manganotti P, Refatti N, Forgione A, Rizzuto N (2002) Changes in motor cortex inhibition over time in patients with amyotrophic lateral sclerosis. J Neurol 249:1723–1728

    Article  PubMed  Google Scholar 

  54. Ziemann U, Winter M, Reimers CD, Reimers K, Tergau F, Paulus W (1997) Impaired motor cortex inhibition in patients with amyotrophic lateral sclerosis. Evidence from paired transcranial magnetic stimulation. Neurology 49:1292–1298

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all patients who participated in this study.

Funding

This study was funded in part by a grant from the Houston Methodist Specialty Physicians Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh A. Helekar.

Ethics declarations

Conflicts of interest

Santosh Helekar is listed as an inventor on U.S. patent numbers 9456784, 10398907, 10500408 and 10874870 covering the device used in this study. The patents are licensed to Seraya Medical, LLC. The other authors have no competing interests to disclose.

Ethical approval

This study was approved by our Institutional Review Board.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 144 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helekar, S.A., Thonhoff, J., John, B.S. et al. Modulation of spontaneous motor unit potentials by a new motor cortical magnetic stimulation method in amyotrophic lateral sclerosis. J Neurol 269, 5487–5496 (2022). https://doi.org/10.1007/s00415-022-11214-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-022-11214-8

Keywords

Navigation