Skip to main content

Advertisement

Log in

Clinical and genetic analyses of 150 patients with paroxysmal kinesigenic dyskinesia

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Mutations in PRRT2 and 16p11.2 microdeletion including PRRT2 have been identified as the pathogenic cause of paroxysmal kinesigenic dyskinesia (PKD).

Objective

The objective was to investigate the clinical and genetic features of PKD and to analyze the genotype–phenotype correlation.

Methods

We recruited PKD patients, recorded clinical manifestations, and performed PRRT2 screening in 150 PKD patients by unified PKD registration forms. Genotype–phenotype correlation analyses were conducted in probands. High-knee-exercise (HKE) tests were applied in one hundred and six patients.

Results

Eight PRRT2 mutations were detected, accounting for 22.76% of the probands. Three mutations (c.649dupC, c.649delC, and c.510_513delTCTG) were already reported, while four mutations (c.252_264delCACAGACCTCAGC, c.503_504delCT, c.679C > T, and c.804C > A) were first reported. One heterozygous microdeletion of 606 kb in 16p11.2 was detected in one patient. Compared with non-PRRT2 mutation carriers, the PRRT2 mutation carriers were younger at onset, experienced longer attacks, and tended to present with complicated PKD, combined phenotypes of dystonia and chorea. 57.01% of patients could effectively induce movement disorders through the HKE test. A good response was shown in 81.93% of the patients prescribed with antiepileptic drugs. 13.54% (13/96) had abnormal EEG results.

Conclusions

PRRT2 mutations are common in patients with PKD and are significantly associated with an earlier age at onset, longer duration of attacks, a complicated form of PKD, combined phenotypes of dystonia and chorea. Patients with microdeletion of 16p11.2 may have more severe manifestations. The HKE test could contribute to the diagnosis of PKD. Carbamazepine is still the first choice for PKD patients, but individualized treatment should be formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kertesz A (1967) Paroxysmal kinesigenic choreoathetosis. An entity within the paroxysmal choreoathetosis syndrome. Description of 10 cases, including 1 autopsied. Neurology 17(7):680–690. https://doi.org/10.1212/wnl.17.7.680

    Article  CAS  PubMed  Google Scholar 

  2. Bruno MK, Hallett M, Gwinn-Hardy K, Sorensen B, Considine E, Tucker S, Lynch DR, Mathews KD, Swoboda KJ, Harris J et al (2004) Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria. Neurology 63(12):2280–2287. https://doi.org/10.1212/01.wnl.0000147298.05983.50

    Article  CAS  PubMed  Google Scholar 

  3. Wang JL, Cao L, Li XH, Hu ZM, Li JD, Zhang JG, Liang Y, San A, Li N, Chen SQ et al (2011) Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain 134(Pt 12):3493–3501. https://doi.org/10.1093/brain/awr289

    Article  PubMed  Google Scholar 

  4. Bhatia KP, Schneider SA (2012) Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesia. Mov Disord 27(6):707. https://doi.org/10.1002/mds.25038

    Article  PubMed  Google Scholar 

  5. Chen WJ, Lin Y, Xiong ZQ, Wei W, Ni W, Tan GH, Guo SL, He J, Chen YF, Zhang QJ et al (2011) Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet 43(12):1252–1255. https://doi.org/10.1038/ng.1008

    Article  CAS  PubMed  Google Scholar 

  6. Méneret A, Grabli D, Depienne C, Gaudebout C, Picard F, Dürr A, Lagroua I, Bouteiller D, Mignot C, Doummar D et al (2012) PRRT2 mutations: a major cause of paroxysmal kinesigenic dyskinesia in the European population. Neurology 79(2):170–174. https://doi.org/10.1212/WNL.0b013e31825f06c3

    Article  CAS  PubMed  Google Scholar 

  7. Erro R, Sheerin UM, Bhatia KP (2014) Paroxysmal dyskinesias revisited: a review of 500 genetically proven cases and a new classification. Mov Disord 29(9):1108–1116. https://doi.org/10.1002/mds.25933

    Article  PubMed  Google Scholar 

  8. Chen YP, Song W, Yang J, Zheng ZZ, Huang R, Chen K, Zhao B, Chen XP, Burgunder JM, Shang HF (2014) PRRT2 mutation screening in patients with paroxysmal kinesigenic dyskinesia from Southwest China. Eur J Neurol 21(1):174–176. https://doi.org/10.1111/ene.12122

    Article  CAS  PubMed  Google Scholar 

  9. Gardiner AR, Bhatia KP, Stamelou M, Dale RC, Kurian MA, Schneider SA, Wali GM, Counihan T, Schapira AH, Spacey SD et al (2012) PRRT2 gene mutations: from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology 79(21):2115–2121. https://doi.org/10.1212/WNL.0b013e3182752c5a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gardiner AR, Jaffer F, Dale RC, Labrum R, Erro R, Meyer E, Xiromerisiou G, Stamelou M, Walker M, Kullmann D et al (2015) The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain 138(Pt 12):3567–3580. https://doi.org/10.1093/brain/awv310

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu Q, Qi Z, Wan XH, Li JY, Shi L, Lu Q, Zhou XQ, Qiao L, Wu LW, Liu XQ et al (2012) Mutations in PRRT2 result in paroxysmal dyskinesias with marked variability in clinical expression. J Med Genet 49(2):79–82. https://doi.org/10.1136/jmedgenet-2011-100653

    Article  CAS  PubMed  Google Scholar 

  12. Marini C, Conti V, Mei D, Battaglia D, Lettori D, Losito E, Bruccini G, Tortorella G, Guerrini R (2012) PRRT2 mutations in familial infantile seizures, paroxysmal dyskinesia, and hemiplegic migraine. Neurology 79(21):2109–2114. https://doi.org/10.1212/WNL.0b013e3182752ca2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang YL, Yuan F, Yang Y, Sun XL, Song L, Jiang W (2018) CHRNA4 variant causes paroxysmal kinesigenic dyskinesia and genetic epilepsy with febrile seizures plus? Seizure 56:88–91. https://doi.org/10.1016/j.seizure.2018.02.005

    Article  PubMed  Google Scholar 

  14. Gardella E, Becker F, Møller RS, Schubert J, Lemke JR, Larsen LH, Eiberg H, Nothnagel M, Thiele H, Altmüller J et al (2016) Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol 79(3):428–436. https://doi.org/10.1002/ana.24580

    Article  CAS  PubMed  Google Scholar 

  15. Suls A, Dedeken P, Goffin K, Van Esch H, Dupont P, Cassiman D, Kempfle J, Wuttke TV, Weber Y, Lerche H et al (2008) Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain 131(Pt 7):1831–1844. https://doi.org/10.1093/brain/awn113

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang HX, Li HF, Liu GL, Wen XD, Wu ZY (2016) Mutation analysis of MR-1, SLC2A1, and CLCN1 in 28 PRRT2-negative paroxysmal kinesigenic dyskinesia patients. Chin Med J (Engl) 129(9):1017–1021. https://doi.org/10.4103/0366-6999.180529

    Article  CAS  Google Scholar 

  17. Tian WT, Huang XJ, Mao X, Liu Q, Liu XL, Zeng S, Guo XN, Shen JY, Xu YQ, Tang HD et al (2018) Proline-rich transmembrane protein 2-negative paroxysmal kinesigenic dyskinesia: clinical and genetic analyses of 163 patients. Mov Disord 33(3):459–467. https://doi.org/10.1002/mds.27274

    Article  CAS  PubMed  Google Scholar 

  18. Bruno MK, Hallett M, Gwinn-Hardy K, Sorensen B, Considine E, Tucker S, Lynch DR, Mathews KD, Swoboda KJ, Harris J et al (2004) Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia—new diagnostic criteria. Neurology 63(12):2280–2287

    Article  CAS  Google Scholar 

  19. Huang XJ, Wang T, Wang JL, Liu XL, Che XQ, Li J, Mao X, Zhang M, Bi GH, Wu L et al (2015) Paroxysmal kinesigenic dyskinesia: clinical and genetic analyses of 110 patients. Neurology 85(18):1546–1553. https://doi.org/10.1212/wnl.0000000000002079

    Article  CAS  PubMed  Google Scholar 

  20. Huang XJ, Wang SG, Guo XN, Tian WT, Zhan FX, Zhu ZY, Yin XM, Liu Q, Yin KL, Liu XR et al (2020) The phenotypic and genetic spectrum of paroxysmal kinesigenic dyskinesia in China. Mov Disord 35(8):1428–1437. https://doi.org/10.1002/mds.28061

    Article  CAS  PubMed  Google Scholar 

  21. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Hum Mutat 17(5):405–424. https://doi.org/10.1002/humu.23626

    Article  Google Scholar 

  22. Cao L, Huang X, Wang N, Wu Z, Zhang C, Gu W, Cong S, Ma J, Wei L, Deng Y et al (2021) Recommendations for the diagnosis and treatment of paroxysmal kinesigenic dyskinesia: an expert consensus in China. Transl Neurodegener 10(1):7. https://doi.org/10.1186/s40035-021-00231-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan LC, Methawasin K, Teng EW, Ng AR, Seah SH, Au WL, Liu JJ, Foo JN, Zhao Y, Tan EK (2014) Clinico-genetic comparisons of paroxysmal kinesigenic dyskinesia patients with and without PRRT2 mutations. Eur J Neurol 21(4):674–678. https://doi.org/10.1111/ene.12142

    Article  CAS  PubMed  Google Scholar 

  24. Yang Y, Su Y, Guo Y, Ding Y, Xu S, Jiang Y, Wang S, Ding M (2012) Oxcarbazepine versus carbamazepine in the treatment of paroxysmal kinesigenic dyskinesia. Int J Neurosci 122(12):719–722. https://doi.org/10.3109/00207454.2012.715109

    Article  CAS  PubMed  Google Scholar 

  25. Li HF, Chen WJ, Ni W, Wang KY, Liu GL, Wang N, Xiong ZQ, Xu J, Wu ZY (2013) PRRT2 mutation correlated with phenotype of paroxysmal kinesigenic dyskinesia and drug response. Neurology 80(16):1534–1535. https://doi.org/10.1212/WNL.0b013e31828cf7e1

    Article  PubMed  Google Scholar 

  26. Tan GH, Liu YY, Wang L, Li K, Zhang ZQ, Li HF, Yang ZF, Li Y, Li D, Wu MY et al (2018) PRRT2 deficiency induces paroxysmal kinesigenic dyskinesia by regulating synaptic transmission in cerebellum. Cell Res 28(1):90–110. https://doi.org/10.1038/cr.2017.128

    Article  CAS  PubMed  Google Scholar 

  27. Zhang XJ, Xu ZY, Wu YC, Tan EK (2019) Paroxysmal movement disorders: recent advances and proposal of a classification system. Parkinsonism Relat Disord 59:131–139. https://doi.org/10.1016/j.parkreldis.2019.02.021

    Article  PubMed  Google Scholar 

  28. Lee HY, Huang Y, Bruneau N, Roll P, Roberson ED, Hermann M, Quinn E, Maas J, Edwards R, Ashizawa T et al (2012) Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep 1(1):2–12. https://doi.org/10.1016/j.celrep.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  29. Valente P, Castroflorio E, Rossi P, Fadda M, Sterlini B, Cervigni RI, Prestigio C, Giovedi S, Onofri F, Mura E et al (2016) PRRT2 Is a key component of the Ca(2+)-dependent neurotransmitter release machinery. Cell Rep 15(1):117–131. https://doi.org/10.1016/j.celrep.2016.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fruscione F, Valente P, Sterlini B, Romei A, Baldassari S, Fadda M, Prestigio C, Giansante G, Sartorelli J, Rossi P et al (2018) PRRT2 controls neuronal excitability by negatively modulating Na+ channel 1.2/1.6 activity. Brain 141(4):1000–1016. https://doi.org/10.1093/brain/awy051

    Article  PubMed  PubMed Central  Google Scholar 

  31. Binda F, Valente P, Marte A, Baldelli P, Benfenati F (2021) Increased responsiveness at the cerebellar input stage in the PRRT2 knockout model of paroxysmal kinesigenic dyskinesia. Neurobiol Dis 152:105275. https://doi.org/10.1016/j.nbd.2021.105275

    Article  CAS  PubMed  Google Scholar 

  32. Ferrante D, Sterlini B, Prestigio C, Marte A, Corradi A, Onofri F, Tortarolo G, Vicidomini G, Petretto A, Muià J et al (2021) PRRT2 modulates presynaptic Ca(2+) influx by interacting with P/Q-type channels. Cell Rep 35(11):109248. https://doi.org/10.1016/j.celrep.2021.109248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cao L, Huang XJ, Zheng L, Xiao Q, Wang XJ, Chen SD (2012) Identification of a novel PRRT2 mutation in patients with paroxysmal kinesigenic dyskinesias and c.649dupC as a mutation hot-spot. Parkinsonism Relat Disord 18(5):704–706. https://doi.org/10.1016/j.parkreldis.2012.02.006

    Article  PubMed  Google Scholar 

  34. Heron SE, Grinton BE, Kivity S, Afawi Z, Zuberi SM, Hughes JN, Pridmore C, Hodgson BL, Iona X, Sadleir LG et al (2012) PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 90(1):152–160. https://doi.org/10.1016/j.ajhg.2011.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heron SE, Dibbens LM (2013) Role of PRRT2 in common paroxysmal neurological disorders: a gene with remarkable pleiotropy. J Med Genet 50(3):133–139. https://doi.org/10.1136/jmedgenet-2012-101406

    Article  CAS  PubMed  Google Scholar 

  36. He J, Tang H, Liu C, Tan L, Xiao W, Xiao B, Long H, Long L (2021) Novel PRRT2 gene variants identified in paroxysmal kinesigenic dyskinesia and benign familial infantile epilepsy in Chinese families. Exp Ther Med 21(5):504. https://doi.org/10.3892/etm.2021.9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu L, Tang HD, Huang XJ, Zheng L, Liu XL, Wang T, Wang JY, Cao L, Chen SD (2014) PRRT2 truncated mutations lead to nonsense-mediated mRNA decay in Paroxysmal Kinesigenic Dyskinesia. Parkinsonism Relat Disord 20(12):1399–1404. https://doi.org/10.1016/j.parkreldis.2014.10.012

    Article  PubMed  Google Scholar 

  38. Calame DJ, Xiao J, Khan MM, Hollingsworth TJ, Xue Y, Person AL, LeDoux MS (2020) Presynaptic PRRT2 deficiency causes cerebellar dysfunction and paroxysmal kinesigenic dyskinesia. Neuroscience 448:272–286. https://doi.org/10.1016/j.neuroscience.2020.08.034

    Article  CAS  PubMed  Google Scholar 

  39. Lu B, Lou SS, Xu RS, Kong DL, Wu RJ, Zhang J, Zhuang L, Wu XM, He JY, Wu ZY et al (2021) Cerebellar spreading depolarization mediates paroxysmal movement disorder. Cell Rep 36(12):109743. https://doi.org/10.1016/j.celrep.2021.109743

    Article  CAS  PubMed  Google Scholar 

  40. Ekmen A, Meneret A, Valabregue R, Beranger B, Worbe Y, Lamy JC, Mehdi S, Herve A, Adanyeguh I, Temiz G et al (2022) Cerebellum dysfunction in patients with PRRT2-related paroxysmal dyskinesia. Neurology 98(10):e1077–e1089. https://doi.org/10.1212/wnl.0000000000200060

    Article  CAS  PubMed  Google Scholar 

  41. Mao CY, Shi CH, Song B, Wu J, Ji Y, Qin J, Li YS, Wang JJ, Shang DD, Sun SL et al (2014) Genotype–phenotype correlation in a cohort of paroxysmal kinesigenic dyskinesia cases. J Neurol Sci 340(1–2):91–93. https://doi.org/10.1016/j.jns.2014.02.034

    Article  CAS  PubMed  Google Scholar 

  42. Lipton J, Rivkin MJ (2009) 16p11.2-related paroxysmal kinesigenic dyskinesia and dopa-responsive parkinsonism in a child. Neurology 73(6):479–480. https://doi.org/10.1212/WNL.0b013e3181b16393

    Article  PubMed  Google Scholar 

  43. Dale RC, Grattan-Smith P, Fung VS, Peters GB (2011) Infantile convulsions and paroxysmal kinesigenic dyskinesia with 16p11.2 microdeletion. Neurology 77(14):1401–1402. https://doi.org/10.1212/WNL.0b013e31823152d7

    Article  PubMed  Google Scholar 

  44. Termsarasab P, Yang AC, Reiner J, Mei H, Scott SA, Frucht SJ (2014) Paroxysmal kinesigenic dyskinesia caused by 16p11.2 microdeletion. Tremor Other Hyperkinetic Movements (New York, NY) 4:274. https://doi.org/10.7916/d8n58k0q

    Article  Google Scholar 

  45. Weber A, Köhler A, Hahn A, Neubauer B, Müller U (2013) Benign infantile convulsions (IC) and subsequent paroxysmal kinesigenic dyskinesia (PKD) in a patient with 16p11.2 microdeletion syndrome. Neurogenetics 14(3–4):251–253. https://doi.org/10.1007/s10048-013-0376-7

    Article  PubMed  Google Scholar 

  46. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, Saemundsen E, Stefansson H, Ferreira MA, Green T et al (2008) Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 358(7):667–675. https://doi.org/10.1056/NEJMoa075974

    Article  CAS  PubMed  Google Scholar 

  47. Yang L, You C, Qiu S, Yang X, Li Y, Liu F, Zhang D, Niu Y, Xu L, Xu N et al (2020) Novel and de novo point and large microdeletion mutation in PRRT2-related epilepsy. Brain Behav 10(5):e01597. https://doi.org/10.1002/brb3.1597

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the guardians of the patients for the support and cooperation.

Funding

This study was funded by Shanghai Municipal Commission of Health and Family Planning (No.20184Y0056) and the National Natural Science Foundation of China (No.81870889 and 82071258). Dr. Xiaoli Liu is in charge of Shanghai Municipal Commission of Health and Family Planning (No.20184Y0056). Prof. Cao is in charge of the National Natural Science Foundation of China (No.81870889 and 82071258).

Author information

Authors and Affiliations

Authors

Contributions

XL: Funding, data acquisition, analysis, and interpretation of data, and drafted the manuscript for intellectual content. HK: Data acquisition, interpreted the data, and drafted the manuscript for intellectual content. XQ: Data acquisition, statistical analysis, and statistical plots. SW: Data acquisition. FZ: Data acquisition. ZL: Data acquisition. XH: Data acquisition. WT: Data acquisition. BZ: Data acquisition, analysis of data, and revised the manuscript for intellectual content. LC: Funding, study design and conceptualization, analysis and interpretation of data, manuscript revision, and supervision.

Corresponding authors

Correspondence to Bin Zhang or Li Cao.

Ethics declarations

Conflicts of interests

The corresponding author in this study states that there is no conflict of interest.

Ethics approval

The study was approved by the ethics committee of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China, and all participants or their guardians provided written informed consents. Written informed consent, which also included the consent for the publication of medical information, was obtained from the guardians.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Ke, H., Qian, X. et al. Clinical and genetic analyses of 150 patients with paroxysmal kinesigenic dyskinesia. J Neurol 269, 4717–4728 (2022). https://doi.org/10.1007/s00415-022-11103-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-022-11103-0

Keywords

Navigation