Skip to main content

Advertisement

Log in

A focus on secondary progressive multiple sclerosis (SPMS): challenges in diagnosis and definition

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Secondary progressive multiple sclerosis (SPMS) is the second most common form of multiple sclerosis (MS). One in two relapse remitting multiple sclerosis (RRMS) patients will develop SPMS within 15 years and up to two-thirds after 30 years, leading to a progressive decrease of neurological function and limitation of daily activities. Nevertheless, the SPMS diagnosis is often established retrospectively and delayed up to 3 years due to several patient- and clinician-related factors. Definitive clinical diagnostic criteria are lacking and research is currently ongoing to identify imaging and biochemical biomarkers. As new therapies are introduced, early SPMS diagnosis may represent a window of opportunity for intervention. New approaches, endpoints or technologies could help physicians establishing a diagnosis. Here, we review SPMS in relation to its diagnostic and definition challenges and current screening techniques and tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Khurana V SH, Medin J, Adlard N (2018) Estimated prevalence of diagnosed secondary progressive multiple sclerosis in the Americas and Europe: results from a systematic literature search. In: Paper presented at the poster presented at the American Academy of Neurology Annual Meeting, 21–27 April 2018, Los Angeles, CA, USA.

  2. Multiple Sclerosis International Federation (MSIF). (2013) Atlas of MS 2013. https://www.msif.org/wp-content/uploads/2014/09/Atlas-of-MS.pdf. Accessed 24 Apr 2019

  3. English C, Aloi JJ (2015) New FDA-approved disease-modifying therapies for multiple sclerosis. Clin Ther 37(4):691–715. https://doi.org/10.1016/j.clinthera.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  4. Coret F, Perez-Miralles FC, Gascon F et al (2018) Onset of secondary progressive multiple sclerosis is not influenced by current relapsing multiple sclerosis therapies. Mult Scler J Exp Transl Clin 4(2):2055217318783347. https://doi.org/10.1177/2055217318783347

    Article  PubMed  PubMed Central  Google Scholar 

  5. Scalfari A, Neuhaus A, Daumer M et al (2014) Onset of secondary progressive phase and long-term evolution of multiple sclerosis. J Neurol Neurosurg Psychiatry 85(1):67–75. https://doi.org/10.1136/jnnp-2012-304333

    Article  PubMed  Google Scholar 

  6. Cree BA, Gourraud PA, Oksenberg JR et al (2016) Long-term evolution of multiple sclerosis disability in the treatment era. Ann Neurol 80(4):499–510. https://doi.org/10.1002/ana.24747

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tedeholm H, Lycke J, Skoog B et al (2013) Time to secondary progression in patients with multiple sclerosis who were treated with first generation immunomodulating drugs. Mult Scler (Houndmills, Basingstoke, Engl) 19(6):765–774. https://doi.org/10.1177/1352458512463764

    Article  CAS  Google Scholar 

  8. Davies F, Wood F, Brain KE et al (2016) The transition to secondary progressive multiple sclerosis: an exploratory qualitative study of health professionals' experiences. Int J MS Care 18(5):257–264. https://doi.org/10.7224/1537-2073.2015-062

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rocca MA, Mezzapesa DM, Falini A et al (2003) Evidence for axonal pathology and adaptive cortical reorganization in patients at presentation with clinically isolated syndromes suggestive of multiple sclerosis. NeuroImage 18(4):847–855

    Article  Google Scholar 

  10. Mainero C, Caramia F, Pozzilli C et al (2004) fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. NeuroImage 21(3):858–867. https://doi.org/10.1016/j.neuroimage.2003.10.004

    Article  PubMed  Google Scholar 

  11. Tracy JI, Hampstead BM, Sathian K (2015) Cognitive plasticity in neurologic disorders. Oxford University Press, Oxford https://doi.org/10.1093/med/9780199965243.001.0001

    Book  Google Scholar 

  12. Lopez-Gongora M, Escartin A, Martinez-Horta S et al (2015) Neurophysiological evidence of compensatory brain mechanisms in early-stage multiple sclerosis. PLoS ONE 10(8):e0136786. https://doi.org/10.1371/journal.pone.0136786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sumowski JF, Rocca MA, Leavitt VM et al (2013) Brain reserve and cognitive reserve in multiple sclerosis: what you've got and how you use it. Neurology 80(24):2186–2193. https://doi.org/10.1212/WNL.0b013e318296e98b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ziemssen T, Kern R, Thomas K (2016) Multiple sclerosis: clinical profiling and data collection as prerequisite for personalized medicine approach. BMC Neurol 16:124. https://doi.org/10.1186/s12883-016-0639-7

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dutta R, Trapp BD (2014) Relapsing and progressive forms of multiple sclerosis: insights from pathology. Curr Opin Neurol 27(3):271–278. https://doi.org/10.1097/wco.0000000000000094

    Article  PubMed  PubMed Central  Google Scholar 

  16. Davies F, Edwards A, Brain K et al (2015) 'You are just left to get on with it': qualitative study of patient and carer experiences of the transition to secondary progressive multiple sclerosis. BMJ Open 5(7):e007674. https://doi.org/10.1136/bmjopen-2015-007674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lublin FD, Reingold SC, Cohen JA et al (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83(3):278–286. https://doi.org/10.1212/wnl.0000000000000560

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cree BAC, Hollenbach JA, Bove R et al (2019) Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol 85(5):653–666. https://doi.org/10.1002/ana.25463

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tremlett H, Zhao Y, Devonshire V (2009) Natural history comparisons of primary and secondary progressive multiple sclerosis reveals differences and similarities. J Neurol 256(3):374–381. https://doi.org/10.1007/s00415-009-0039-7

    Article  PubMed  Google Scholar 

  20. Koch M, Kingwell E, Rieckmann P, Tremlett H (2010) The natural history of secondary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 81(9):1039–1043. https://doi.org/10.1136/jnnp.2010.208173

    Article  PubMed  Google Scholar 

  21. Jokubaitis VG, Spelman T, Kalincik T et al (2015) Predictors of disability worsening in clinically isolated syndrome. Ann Clin Transl Neurol 2(5):479–491. https://doi.org/10.1002/acn3.187

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kavaliunas A, Manouchehrinia A, Stawiarz L et al (2017) Importance of early treatment initiation in the clinical course of multiple sclerosis. Mult Scler (Houndmills, Basingstoke, Engl) 23(9):1233–1240. https://doi.org/10.1177/1352458516675039

    Article  Google Scholar 

  23. Brown JWL, Coles A, Horakova D et al (2019) Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA 321(2):175–187. https://doi.org/10.1001/jama.2018.20588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Charcot JM (1865) Sclérose des cordons latéraux de la moelle épinière chez une femme hystérique atteinte de contractures des 4 membres. L'Union Médicale, Paris

    Google Scholar 

  25. Thompson AJ, Banwell BL, Barkhof F et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17(2):162–173. https://doi.org/10.1016/s1474-4422(17)30470-2

    Article  PubMed  Google Scholar 

  26. Lucchinetti C, Bruck W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717

    Article  CAS  Google Scholar 

  27. Lassmann H, Bruck W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7(3):115–121

    Article  CAS  Google Scholar 

  28. O'Loughlin E, Hourihan S, Chataway J et al (2017) The experience of transitioning from relapsing remitting to secondary progressive multiple sclerosis: views of patients and health professionals. Disabil Rehabil 39(18):1821–1828. https://doi.org/10.1080/09638288.2016.1211760

    Article  PubMed  Google Scholar 

  29. Ziemssen T (2011) Symptom management in patients with multiple sclerosis. J Neurol Sci 311(Suppl 1):S48–52. https://doi.org/10.1016/s0022-510x(11)70009-0

    Article  PubMed  Google Scholar 

  30. PatientsLikeMe. (2016) The voice of patientslikeme multiple sclerosis patients: a brief report on patient perceptions of important treatment outcomes. https://news.patientslikeme.com/sites/patientslikeme.newshq.businesswire.com/files/doc_library/file/The_Voice_of_PatientsLikeMe_Multiple_Sclerosis_Patients.pdf Accessed 06 April 2019

  31. Gross HJ, Watson C (2017) Characteristics, burden of illness, and physical functioning of patients with relapsing-remitting and secondary progressive multiple sclerosis: a cross-sectional US survey. Neuropsychiatr Dis Treat 13:1349–1357. https://doi.org/10.2147/ndt.S132079

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sihra N, Gibson S, Bradley L (2017) Meeting the clinical needs of patients with progressive multiple sclerosis. Clin Med (Lond, Engl) 17(3):286. https://doi.org/10.7861/clinmedicine.17-3-286

    Article  Google Scholar 

  33. Costelloe L, O'Rourke K, Kearney H et al (2007) The patient knows best: significant change in the physical component of the Multiple Sclerosis Impact Scale (MSIS-29 physical). J Neurol Neurosurg Psychiatry 78(8):841–844. https://doi.org/10.1136/jnnp.2006.105759

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bosma LV, Sonder JM, Kragt JJ et al (2015) Detecting clinically-relevant changes in progressive multiple sclerosis. Mult Scler (Houndmills, Basingstoke, Engl) 21(2):171–179. https://doi.org/10.1177/1352458514540969

    Article  CAS  Google Scholar 

  35. Goretti B, Portaccio E, Zipoli V et al (2010) Coping strategies, cognitive impairment, psychological variables and their relationship with quality of life in multiple sclerosis. Neurol Sci 31(Suppl 2):S227–230. https://doi.org/10.1007/s10072-010-0372-8

    Article  PubMed  Google Scholar 

  36. Sullivan CLWJ, Rabin BM et al (2004) Psychosocial adjustment to multiple sclerosis. Int J MS Care 6:98–105

    Article  Google Scholar 

  37. Ayache SS, Chalah MA (2017) Fatigue in multiple sclerosis-Insights into evaluation and management. Neurophysiologie clinique Clin Neurophysiol 47(2):139–171. https://doi.org/10.1016/j.neucli.2017.02.004

    Article  Google Scholar 

  38. Powell DJH, Liossi C, Schlotz W, Moss-Morris R (2017) Tracking daily fatigue fluctuations in multiple sclerosis: ecological momentary assessment provides unique insights. J Behav Med 40(5):772–783. https://doi.org/10.1007/s10865-017-9840-4

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kasser SL, Goldstein A, Wood PK, Sibold J (2017) Symptom variability, affect and physical activity in ambulatory persons with multiple sclerosis: understanding patterns and time-bound relationships. Disabil Health J 10(2):207–213. https://doi.org/10.1016/j.dhjo.2016.10.006

    Article  PubMed  Google Scholar 

  40. Kratz AL, Murphy SL, Braley TJ (2017) Ecological momentary assessment of pain, fatigue, depressive, and cognitive symptoms reveals significant daily variability in multiple sclerosis. Arch Phys Med Rehabil 98(11):2142–2150. https://doi.org/10.1016/j.apmr.2017.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  41. Coetzee T, Zaratin P, Gleason TL (2015) Overcoming barriers in progressive multiple sclerosis research. Lancet Neurol 14(2):132–133. https://doi.org/10.1016/S1474-4422(14)70323-0

    Article  PubMed  Google Scholar 

  42. Giovannetti AM, Giordano A, Pietrolongo E et al (2017) Managing the transition (ManTra): a resource for persons with secondary progressive multiple sclerosis and their health professionals: protocol for a mixed-methods study in Italy. BMJ Open 7(8):e017254. https://doi.org/10.1136/bmjopen-2017-017254

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lorscheider J, Buzzard K, Jokubaitis V et al (2016) Defining secondary progressive multiple sclerosis. Brain J Neurol 139(Pt 9):2395–2405. https://doi.org/10.1093/brain/aww173

    Article  Google Scholar 

  44. Katz Sand I, Krieger S, Farrell C, Miller AE (2014) Diagnostic uncertainty during the transition to secondary progressive multiple sclerosis. Mult Scler (Houndmills, Basingstoke, Engl) 20(12):1654–1657. https://doi.org/10.1177/1352458514521517

    Article  Google Scholar 

  45. Kremenchutzky M, Rice GP, Baskerville J et al (2006) The natural history of multiple sclerosis: a geographically based study 9: observations on the progressive phase of the disease. Brain J Neurol 129(Pt 3):584–594. https://doi.org/10.1093/brain/awh721

    Article  CAS  Google Scholar 

  46. Bamer AM, Cetin K, Amtmann D et al (2007) Comparing a self report questionnaire with physician assessment for determining multiple sclerosis clinical disease course: a validation study. Mult Scler (Houndmills, Basingstoke, Engl) 13(8):1033–1037. https://doi.org/10.1177/1352458507077624

    Article  CAS  Google Scholar 

  47. Tuohy O, Costelloe L, Hill-Cawthorne G et al (2015) Alemtuzumab treatment of multiple sclerosis: long-term safety and efficacy. J Neurol Neurosurg Psychiatry 86(2):208–215. https://doi.org/10.1136/jnnp-2014-307721

    Article  PubMed  Google Scholar 

  48. Skoog B, Tedeholm H, Runmarker B et al (2014) Continuous prediction of secondary progression in the individual course of multiple sclerosis. Mult Scler Relat Disord 3(5):584–592. https://doi.org/10.1016/j.msard.2014.04.004

    Article  PubMed  Google Scholar 

  49. Manouchehrinia A, Zhu F, Piani-Meier D et al (2019) Predicting risk of secondary progression in multiple sclerosis: a nomogram. Mult Scler (Houndmills, Basingstoke, Engl) 25(8):1102–1112. https://doi.org/10.1177/1352458518783667

    Article  Google Scholar 

  50. Kalincik T, Cutter G, Spelman T et al (2015) Defining reliable disability outcomes in multiple sclerosis. Brain J Neurol 138(11):3287–3298. https://doi.org/10.1093/brain/awv258

    Article  Google Scholar 

  51. Kappos L, Butzkueven H, Wiendl H et al (2018) Greater sensitivity to multiple sclerosis disability worsening and progression events using a roving versus a fixed reference value in a prospective cohort study. Mult Scler (Houndmills, Basingstoke, Engl) 24(7):963–973. https://doi.org/10.1177/1352458517709619

    Article  Google Scholar 

  52. Whitaker JN, McFarland HF, Rudge P, Reingold SC (1995) Outcomes assessment in multiple sclerosis clinical trials: a critical analysis. Mult Scler (Houndmills, Basingstoke, Engl) 1(1):37–47. https://doi.org/10.1177/135245859500100107

    Article  CAS  Google Scholar 

  53. Meyer-Moock S, Feng YS, Maeurer M et al (2014) Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis. BMC Neurol 14:58. https://doi.org/10.1186/1471-2377-14-58

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bosma L, Kragt JJ, Polman CH, Uitdehaag BM (2013) Walking speed, rather than Expanded Disability Status Scale, relates to long-term patient-reported impact in progressive MS. Mult Scler (Houndmills, Basingstoke, Engl) 19(3):326–333. https://doi.org/10.1177/1352458512454346

    Article  Google Scholar 

  55. Cadavid D, Jurgensen S, Lee S (2013) Impact of natalizumab on ambulatory improvement in secondary progressive and disabled relapsing-remitting multiple sclerosis. PLoS ONE 8(1):e53297. https://doi.org/10.1371/journal.pone.0053297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Galetta KM, Balcer LJ (2013) Measures of visual pathway structure and function in MS: Clinical usefulness and role for MS trials. Mult Scler Relat Disord 2(3):172–182. https://doi.org/10.1016/j.msard.2012.12.004

    Article  PubMed  Google Scholar 

  57. Motl RW, Cohen JA, Benedict R et al (2017) Validity of the timed 25-foot walk as an ambulatory performance outcome measure for multiple sclerosis. Mult Scler (Houndmills, Basingstoke, Engl) 23(5):704–710. https://doi.org/10.1177/1352458517690823

    Article  Google Scholar 

  58. Goldman MD, Motl RW, Scagnelli J et al (2013) Clinically meaningful performance benchmarks in MS: timed 25-foot walk and the real world. Neurology 81(21):1856–1863. https://doi.org/10.1212/01.wnl.0000436065.97642.d2

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kaufman M, Moyer D, Norton J (2000) The significant change for the Timed 25-foot Walk in the multiple sclerosis functional composite. Mult Scler (Houndmills, Basingstoke, Engl) 6(4):286–290. https://doi.org/10.1177/135245850000600411

    Article  CAS  Google Scholar 

  60. Kragt JJ, van der Linden FA, Nielsen JM et al (2006) Clinical impact of 20% worsening on Timed 25-foot Walk and 9-hole Peg Test in multiple sclerosis. Mult Scler (Houndmills, Basingstoke, Engl) 12(5):594–598. https://doi.org/10.1177/1352458506070768

    Article  CAS  Google Scholar 

  61. Cadavid D, Cohen JA, Freedman MS et al (2017) The EDSS-Plus, an improved endpoint for disability progression in secondary progressive multiple sclerosis. Mult Scler (Houndmills, Basingstoke, Engl) 23(1):94–105. https://doi.org/10.1177/1352458516638941

    Article  Google Scholar 

  62. Kappos L WJ, Giovannoni G et al. (2017) Ocrelizumab reduces disability progression independent of relapse activity in patients with relapsing multiple sclerosis. In: Paper presented at the The 7th Joint ECTRIMS–ACTRIMS Meeting. 25–28 October 2017, Paris, France

  63. Lu G, Beadnall HN, Barton J et al (2018) The evolution of “No Evidence of Disease Activity” in multiple sclerosis. Mult Scler Relat Disord 20:231–238. https://doi.org/10.1016/j.msard.2017.12.016

    Article  CAS  PubMed  Google Scholar 

  64. L Kappos (2019) A novel functional composite endpoint to characterize disease progression in patients with secondary progressive multiple sclerosis. In: Paper presented at the AAN 2019: Pre Congress Webcast.

  65. Ha JF, Longnecker N (2010) Doctor-patient communication: a review. Ochsner J 10(1):38–43

    PubMed  PubMed Central  Google Scholar 

  66. Ziemssen T, Simsek D, Lahoz R, Verdun di Cantogno E (2015) Development of a screening tool to support identification of patients with secondary progressive multiple sclerosis (Spms). Value Health 18(7):A763. https://doi.org/10.1016/j.jval.2015.09.2497

    Article  Google Scholar 

  67. https://msprodiscuss.com/

  68. Iwanowski P, Losy J (2015) Immunological differences between classical phenothypes of multiple sclerosis. J Neurol Sci 349(1–2):10–14. https://doi.org/10.1016/j.jns.2014.12.035

    Article  CAS  PubMed  Google Scholar 

  69. Herman S, Khoonsari PE, Tolf A et al (2018) Integration of magnetic resonance imaging and protein and metabolite CSF measurements to enable early diagnosis of secondary progressive multiple sclerosis. Theranostics 8(16):4477–4490. https://doi.org/10.7150/thno.26249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kizlaitiene R, Kaubrys G, Giedraitiene N et al (2017) Composite marker of cognitive dysfunction and brain atrophy is highly accurate in discriminating between relapsing-remitting and secondary progressive multiple sclerosis. Med Sci Monit 23:588–597. https://doi.org/10.12659/msm.903234

    Article  CAS  PubMed  Google Scholar 

  71. Barkhof F, Calabresi PA, Miller DH, Reingold SC (2009) Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol 5(5):256–266. https://doi.org/10.1038/nrneurol.2009.41

    Article  PubMed  Google Scholar 

  72. Filippi M, Agosta F (2007) Magnetization transfer MRI in multiple sclerosis. J Neuroimaging 17(Suppl 1):22s–26s. https://doi.org/10.1111/j.1552-6569.2007.00132.x

    Article  PubMed  Google Scholar 

  73. Miller DH, Barkhof F, Frank JA et al (2002) Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain J Neurol 125(Pt 8):1676–1695. https://doi.org/10.1093/brain/awf177

    Article  Google Scholar 

  74. Naismith RT, Cross AH (2005) Multiple sclerosis and black holes: connecting the pixels. Arch Neurol 62(11):1666–1668. https://doi.org/10.1001/archneur.62.11.1666

    Article  PubMed  Google Scholar 

  75. Newcombe J, Hawkins CP, Henderson CL et al (1991) Histopathology of multiple sclerosis lesions detected by magnetic resonance imaging in unfixed postmortem central nervous system tissue. Brain J Neurol 114(Pt 2):1013–1023. https://doi.org/10.1093/brain/114.2.1013

    Article  Google Scholar 

  76. Gajofatto A, Calabrese M, Benedetti MD, Monaco S (2013) Clinical, MRI, and CSF markers of disability progression in multiple sclerosis. Dis Mark 35(6):687–699. https://doi.org/10.1155/2013/484959

    Article  Google Scholar 

  77. Inglese M, Oesingmann N, Casaccia P, Fleysher L (2011) Progressive multiple sclerosis and gray matter pathology: an MRI perspective. Mt Sinai J Med NY 78(2):258–267. https://doi.org/10.1002/msj.20247

    Article  Google Scholar 

  78. Masek M, Vaneckova M, Krasensky J et al (2008) Secondary-progressive form of multiple sclerosis: MRI changes versus clinical status. Neuro Endocrinol Lett 29(4):461–466

    PubMed  Google Scholar 

  79. Moccia M, de Stefano N, Barkhof F (2017) Imaging outcome measures for progressive multiple sclerosis trials. Multiple Scler (Houndmills, Basingstoke, England) 23(12):1614–1626. https://doi.org/10.1177/1352458517729456

    Article  Google Scholar 

  80. Pulicken M, Gordon-Lipkin E, Balcer LJ et al (2007) Optical coherence tomography and disease subtype in multiple sclerosis. Neurology 69(22):2085–2092. https://doi.org/10.1212/01.wnl.0000294876.49861.dc

    Article  CAS  PubMed  Google Scholar 

  81. Winges KM, Murchison CF, Bourdette DN, Spain RI (2019) Longitudinal optical coherence tomography study of optic atrophy in secondary progressive multiple sclerosis: Results from a clinical trial cohort. Multiple Scler (Houndmills, Basingstoke, Engl) 25(1):55–62. https://doi.org/10.1177/1352458517739136

    Article  Google Scholar 

  82. Herman S, Akerfeldt T, Spjuth O et al (2019) Biochemical differences in cerebrospinal fluid between secondary progressive and relapsing(-)remitting multiple sclerosis. Cells 8(2):84. https://doi.org/10.3390/cells8020084

    Article  CAS  PubMed Central  Google Scholar 

  83. Cai L, Huang J (2018) Neurofilament light chain as a biological marker for multiple sclerosis: a meta-analysis study. Neuropsychiatr Dis Treat 14:2241–2254. https://doi.org/10.2147/ndt.S173280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Disanto G, Barro C, Benkert P et al (2017) Serum Neurofilament light: A biomarker of neuronal damage in multiple sclerosis. Ann Neurol 81(6):857–870. https://doi.org/10.1002/ana.24954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hakansson I, Tisell A, Cassel P et al (2017) Neurofilament light chain in cerebrospinal fluid and prediction of disease activity in clinically isolated syndrome and relapsing-remitting multiple sclerosis. Eur J Neurol 24(5):703–712. https://doi.org/10.1111/ene.13274

    Article  CAS  PubMed  Google Scholar 

  86. Malmestrom C, Haghighi S, Rosengren L et al (2003) Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 61(12):1720–1725. https://doi.org/10.1212/01.wnl.0000098880.19793.b6

    Article  CAS  PubMed  Google Scholar 

  87. Teunissen CE, Khalil M (2012) Neurofilaments as biomarkers in multiple sclerosis. Multiple Scl (Houndmills, Basingstoke, Engl) 18(5):552–556. https://doi.org/10.1177/1352458512443092

    Article  CAS  Google Scholar 

  88. Akgün K, Kretschmann N, Haase R et al (2019) Profiling individual clinical responses by high-frequency serum neurofilament assessment in MS. Neurol: Neuroimmunol Neuroinflammation 6(3):e555. https://doi.org/10.1212/NXI.0000000000000555

    Article  CAS  Google Scholar 

  89. Silber E, Semra YK, Gregson NA, Sharief MK (2002) Patients with progressive multiple sclerosis have elevated antibodies to neurofilament subunit. Neurology 58(9):1372–1381. https://doi.org/10.1212/wnl.58.9.1372

    Article  CAS  PubMed  Google Scholar 

  90. Gnanapavan S, Grant D, Morant S et al (2013) Biomarker report from the phase II lamotrigine trial in secondary progressive MS-neurofilament as a surrogate of disease progression. PLoS ONE 8(8):e70019. https://doi.org/10.1371/journal.pone.0070019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Salzer J, Svenningsson A, Sundstrom P (2010) Neurofilament light as a prognostic marker in multiple sclerosis. Multiple Scler (Houndmills, Basingstoke, Engl) 16(3):287–292. https://doi.org/10.1177/1352458509359725

    Article  CAS  Google Scholar 

  92. Barro C, Benkert P, Disanto G et al (2018) Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain J Neurol 141(8):2382–2391. https://doi.org/10.1093/brain/awy154

    Article  Google Scholar 

  93. Bhan A, Jacobsen C, Myhr KM et al (2018) Neurofilaments and 10-year follow-up in multiple sclerosis. Multiple Scler (Houndmills, Basingstoke, Engl) 24(10):1301–1307. https://doi.org/10.1177/1352458518782005

    Article  Google Scholar 

  94. Vukusic S, Confavreux C (2003) Prognostic factors for progression of disability in the secondary progressive phase of multiple sclerosis. J Neurol Sci 206(2):135–137

    Article  Google Scholar 

  95. Tedeholm H, Skoog B, Lisovskaja V et al (2015) The outcome spectrum of multiple sclerosis: disability, mortality, and a cluster of predictors from onset. J Neurol 262(5):1148–1163. https://doi.org/10.1007/s00415-015-7674-y

    Article  PubMed  Google Scholar 

  96. Dennison L, McCloy Smith E, Bradbury K, Galea I (2016) How do people with multiple sclerosis experience prognostic uncertainty and prognosis communication? A qualitative study. PLoS ONE 11(7):e0158982. https://doi.org/10.1371/journal.pone.0158982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Oliver DJ, Borasio GD, Caraceni A et al (2016) A consensus review on the development of palliative care for patients with chronic and progressive neurological disease. Eur J Neurol 23(1):30–38. https://doi.org/10.1111/ene.12889

    Article  CAS  PubMed  Google Scholar 

  98. Kaur D, Kumar G, Billore N, Singh AK (2016) Defining the role of physiotherapy in palliative care in multiple sclerosis. Indian J Palliat Care 22(2):176–179. https://doi.org/10.4103/0973-1075.179599

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tjalf Ziemssen.

Ethics declarations

Conflicts of interest

HI declares that he has no conflict of interest. UP received personal compensation from Bayer, Biogen and Roche for the consulting service. KA received personal compensation from Novartis, Biogen Idec, Teva, Sanofi and Roche for the consulting service. TZ received personal compensation from Biogen, Bayer, Celgene, Novartis, Roche, Sanofi, Teva for the consulting services. Ziemssen received additional financial support for the research activities from Bayer, BAT; Biogen, Novartis, Teva, and Sanofi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inojosa, H., Proschmann, U., Akgün, K. et al. A focus on secondary progressive multiple sclerosis (SPMS): challenges in diagnosis and definition. J Neurol 268, 1210–1221 (2021). https://doi.org/10.1007/s00415-019-09489-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-019-09489-5

Keywords

Navigation