Skip to main content

Advertisement

Log in

Gaze holding deficits discriminate early from late onset cerebellar degeneration

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The vestibulo-cerebellum calibrates the output of the inherently leaky brainstem neural velocity-to-position integrator to provide stable gaze holding. In healthy humans small-amplitude centrifugal nystagmus is present at extreme gaze-angles, with a non-linear relationship between eye-drift velocity and eye eccentricity. In cerebellar degeneration this calibration is impaired, resulting in pathological gaze-evoked nystagmus (GEN). For cerebellar dysfunction, increased eye drift may be present at any gaze angle (reflecting pure scaling of eye drift found in controls) or restricted to far-lateral gaze (reflecting changes in shape of the non-linear relationship) and resulting eyed-drift patterns could be related to specific disorders. We recorded horizontal eye positions in 21 patients with cerebellar neurodegeneration (gaze-angle = ±40°) and clinically confirmed GEN. Eye-drift velocity, linearity and symmetry of drift were determined. MR-images were assessed for cerebellar atrophy. In our patients, the relation between eye-drift velocity and gaze eccentricity was non-linear, yielding (compared to controls) significant GEN at gaze-eccentricities ≥20°. Pure scaling was most frequently observed (n = 10/18), followed by pure shape-changing (n = 4/18) and a mixed pattern (n = 4/18). Pure shape-changing patients were significantly (p = 0.001) younger at disease-onset compared to pure scaling patients. Atrophy centered around the superior/dorsal vermis, flocculus/paraflocculus and dentate nucleus and did not correlate with the specific drift behaviors observed. Eye drift in cerebellar degeneration varies in magnitude; however, it retains its non-linear properties. With different drift patterns being linked to age at disease-onset, we propose that the gaze-holding pattern (scaling vs. shape-changing) may discriminate early- from late-onset cerebellar degeneration. Whether this allows a distinction among specific cerebellar disorders remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stahl JS, Averbuch-Heller L, Leigh RJ (2000) Acquired nystagmus. Arch Ophthalmol 118:544–549

    Article  CAS  PubMed  Google Scholar 

  2. Holmes G (1907) A form of familial degeneration of the cerebellum. Brain 30:466–488

    Article  Google Scholar 

  3. Cannon SC, Robinson DA (1987) Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J Neurophysiol 57:1383–1409

    CAS  PubMed  Google Scholar 

  4. Zee DS, Leigh RJ, Mathieu-Millaire F (1980) Cerebellar control of ocular gaze stability. Ann Neurol 7:37–40

    Article  CAS  PubMed  Google Scholar 

  5. Robinson DA (1974) The effect of cerebellectomy on the cat’s vestibulo-ocular integrator. Brain Res 71:195–207

    Article  CAS  PubMed  Google Scholar 

  6. Godaux E, Cheron G (1996) The hypothesis of the uniqueness of the oculomotor neural integrator: direct experimental evidence in the cat. J Physiol 492(Pt 2):517–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Lee H, Kim HA (2012) Nystagmus in SCA territory cerebellar infarction: pattern and a possible mechanism. J Neurol Neurosurg Psychiatry

  8. Tarnutzer AA, Berkowitz AL, Robinson KA, Hsieh YH, Newman-Toker DE (2011) Does my dizzy patient have a stroke? A systematic review of bedside diagnosis in acute vestibular syndrome. CMAJ 183:E571–E592

    Article  PubMed Central  PubMed  Google Scholar 

  9. Zee DS, Yee RD, Cogan DG, Robinson DA, Engel WK (1976) Ocular motor abnormalities in hereditary cerebellar ataxia. Brain 99:207–234

    Article  CAS  PubMed  Google Scholar 

  10. Baloh RW, Konrad HR, Honrubia V (1975) Vestibulo-ocular function in patients with cerebellar atrophy. Neurology 25:160–168

    Article  CAS  PubMed  Google Scholar 

  11. Hood JD, Kayan A, Leech J (1973) Rebound nystagmus. Brain 96:507–526

    Article  CAS  PubMed  Google Scholar 

  12. Leech J, Gresty M, Hess K, Rudge P (1977) Gaze failure, drifting eye movements, and centripetal nystagmus in cerebellar disease. Br J Ophthalmol 61:774–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Zee DS, Yamazaki A, Butler PH, Gucer G (1981) Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol 46:878–899

    CAS  PubMed  Google Scholar 

  14. Burde RM, Stroud MH, Roper-Hall G, Wirth FP, O’Leary JL (1975) Ocular motor dysfunction in total and hemicerebellectomized monkeys. Br J Ophthalmol 59:560–565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Westheimer G, Blair SM (1973) Oculomotor defects in cerebellectomized monkeys. Invest Ophthalmol 12:618–621

    CAS  PubMed  Google Scholar 

  16. Optican LM, Robinson DA (1980) Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol 44:1058–1076

    CAS  PubMed  Google Scholar 

  17. Eizenman M, Cheng P, Sharpe JA, Frecker RC (1990) End-point nystagmus and ocular drift: an experimental and theoretical study. Vision Res 30:863–877

    Article  CAS  PubMed  Google Scholar 

  18. Shallo-Hoffmann J, Schwarze H, Simonsz HJ, Muhlendyck H (1990) A reexamination of end-point and rebound nystagmus in normals. Invest Ophthalmol Vis Sci 31:388–392

    CAS  PubMed  Google Scholar 

  19. Bertolini G, Tarnutzer AA, Olasagasti I, Khojasteh E, Weber KP, Bockisch CJ, Straumann D, Marti S (2013) Gaze holding in healthy subjects. PLoS One 8:e61389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Dera T, Boening G, Bardins S, Schneider E (2006) Low-latency video tracking of horizontal, vertical, and torsional eye movements as a basis for 3-DOF realtime motion control of a head-mounted camera. IEEE Conf Syst Man Cybern 6:5191–5196

    Google Scholar 

  21. Schneider E, Dera T, Bard K, Bardins S, Boening G, Brandt T (2005) Eye movement driven head-mounted camera: it looks where the eyes look. IEEE Conf Syst Man Cybern 3:2437–2442

    Google Scholar 

  22. Leigh RJ, Zee DS (2006) The neurology of eye movements, 4th edn. Oxford University Press, New York

    Google Scholar 

  23. Versino M, Hurko O, Zee DS (1996) Disorders of binocular control of eye movements in patients with cerebellar dysfunction. Brain 119(Pt 6):1933–1950

    Article  PubMed  Google Scholar 

  24. Baier B, Dieterich M (2011) Incidence and anatomy of gaze-evoked nystagmus in patients with cerebellar lesions. Neurology 76:361–365

    Article  PubMed  Google Scholar 

  25. Manzoni D, Andre P, Pompeiano O (2004) Proprioceptive neck influences modify the information about tilt direction coded by the cerebellar anterior vermis. Acta Otolaryngol 124:475–480

    Article  CAS  PubMed  Google Scholar 

  26. Goldberg JM, Wilson VJ, Cullen KE, Angelaki DE, Broussard DM, Büttner-Ennever JA, Fukushima K, Minor LB (2012) The vestibular system: a sixth sense. Oxford University Press, New York

    Book  Google Scholar 

  27. Lewis RF, Zee DS (1993) Ocular motor disorders associated with cerebellar lesions: pathophysiology and topical localization. Rev Neurol (Paris) 149:665–677

    CAS  Google Scholar 

  28. Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, Kabani N, Toga A, Evans A, Petrides M (1999) Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. NeuroImage 10:233–260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Tarnutzer and Dr. Bertolini were supported by the Swiss National Science Foundation, the Betty and David Koetser Foundation for Brain Research and the Zurich Center for Integrative Human Physiology, Switzerland. The authors thank Marco Penner for technical support.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Tarnutzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarnutzer, A.A., Weber, K.P., Schuknecht, B. et al. Gaze holding deficits discriminate early from late onset cerebellar degeneration. J Neurol 262, 1837–1849 (2015). https://doi.org/10.1007/s00415-015-7773-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7773-9

Keywords

Navigation