Skip to main content
Log in

Cognitive impairment and memory disorders in relapsing–remitting multiple sclerosis: the role of white matter, gray matter and hippocampus

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Cognitive disorders occur in up to 65 % of multiple sclerosis (MS) patients; they have been correlated with different MRI measures of brain tissue damage, whole and regional brain atrophy. The hippocampal involvement has been poorly investigated in cognitively impaired (CI) MS patients. The objective of this study is to analyze and compare brain tissue abnormalities, including hippocampal atrophy, in relapsing–remitting MS (RRMS) patients with and without cognitive deficits, and to investigate their role in determining cognitive impairment in MS. Forty-six RRMS patients [20 CI and 26 cognitively preserved (CP)] and 25 age, sex and education-matched healthy controls (HCs) underwent neuropsychological evaluation and 3-Tesla anatomical MRI. T2 lesion load (T2-LL) was computed with a semiautomatic method, gray matter volume and white matter volume were estimated using SIENAX. Hippocampal volume (HV) was obtained by manual segmentation. Brain tissues volumes were compared among groups and correlated with cognitive performances. Compared to HCs, RRMS patients had significant atrophy of WM, GM, left and right Hippocampus (p < 0.001). Compared to CP, CI RRMS patients showed higher T2-LL (p = 0.02) and WM atrophy (p = 0.01). In the whole RRMS group, several cognitive tests correlated with brain tissue abnormalities (T2-LL, WM and GM atrophy); only verbal memory performances correlated with left hippocampal atrophy. Our results emphasize the role of T2-LL and WM atrophy in determining clinically evident cognitive impairment in MS patients and provide evidence that GM and hippocampal atrophy occur in MS patients regardless of cognitive status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Julian LJ (2011) Cognitive functioning in multiple sclerosis. Neurol Clin 29(2):507–525

    Article  PubMed  Google Scholar 

  2. Chiaravalloti ND, DeLuca J (2008) Cognitive impairment in multiple sclerosis. Lancet Neurol 7:1139–1151

    Article  PubMed  Google Scholar 

  3. Benedict RH, Weinstock-Guttman B, Fishman I et al (2004) Prediction of neuropsychological impairment in multiple sclerosis: comparison of conventional magnetic resonance imaging measures of atrophy and lesion burden. Arch Neurol 61:226–230

    Article  PubMed  Google Scholar 

  4. Zivadinov R, Sepcic J, Nasuelli D et al (2001) A longitudinal study of brain atrophy and cognitive disturbances in the early phase of relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychol 70:773–780

    Article  CAS  Google Scholar 

  5. Benedict RH, Bruce JM, Dwyer MG et al (2006) Neocortical atrophy, third ventricular width, and cognitive dysfunction in multiple sclerosis. Arch Neurol 63:1301–1306

    Article  PubMed  Google Scholar 

  6. Pelletier J, Suchet L, Witjas T et al (2001) A longitudinal study of callosal atrophy and interhemispheric dysfunction in relapse-remitting multiple sclerosis. Arch Neurol 58:105–111

    Article  CAS  PubMed  Google Scholar 

  7. Roosendaal SD, Moraal B, Pouwels PJ et al (2009) Accumulation of cortical lesions in MS: relation with cognitive impairment. Mult Scler 15(6):708–714

    Article  CAS  PubMed  Google Scholar 

  8. Sicotte NL, Kern KC, Giesser BS et al (2008) Regional hippocampal atrophy in multiple sclerosis. Brain 131(pt 4):1134–1141

    Article  CAS  PubMed  Google Scholar 

  9. Kiy G, Lehmann P, Hahn HK et al (2011) Decreased hippocampal volume, indirectly measured, is associated with depressive symptoms and consolidation deficits in multiple sclerosis. Mult Scler 17(9):1088–1097

    Article  PubMed  Google Scholar 

  10. Anderson VM, Fisniku LK, Zi Khaleel et al (2010) Hippocampal atrophy in relapsing-remitting and primary progressive MS: a comparative study. Mult Scler 16(9):1083–1090

    Article  CAS  PubMed  Google Scholar 

  11. Longoni G, Rocca MA, Pagani E et al (2015) Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS. Brain Struct Funct 220(1):435–444. doi:10.1007/s00429-013-0665-9

    Article  PubMed  Google Scholar 

  12. Bird CM, Burgess N (2008) The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 9:182–194

    Article  CAS  PubMed  Google Scholar 

  13. Geurts JJ, Bö L, Roosendaal SD et al (2007) Extensive hippocampal demyelination in multiple sclerosis. J Neuropathol Exp Neurol 66(9):819–827

    Article  PubMed  Google Scholar 

  14. Roosendaal SD, Moraal B, Vrenken H et al (2008) In vivo MR imaging of hippocampal lesions in multiple sclerosis. J Magn Reson Imaging 27(4):726–731

    Article  PubMed  Google Scholar 

  15. Sumowski JF, Wylie GR, De Luca J, Chiaravalloti N (2010) Intellectual enrichment is linked to cerebral efficiency in multiple sclerosis: functional magnetic resonance imaging evidence for cognitive reserve. Brain 133:362–374

    Article  PubMed Central  PubMed  Google Scholar 

  16. Roosendaal SD, Hulst HE, Vrenken H et al (2010) Structural and Functional Hippocampal Changes in Multiple Sclerosis Patients with Intact Memory Function. Radiology 255:595–604

    Article  PubMed  Google Scholar 

  17. Hulst HE, Schoonheim MM, Roosendaal SD et al (2012) Functional adaptive changes within the hippocampal memory system of patients with multiple sclerosis. Hum Brain Mapp 33(10):2268–2280

    Article  PubMed  Google Scholar 

  18. Polman CH, Reingold SC, Edan G et al (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58:840–846

    Article  PubMed  Google Scholar 

  19. Spielberg CD, Gorsuch RL, Luskene RE (1996) STAI, State-Trait Anxiety Inventory, Forma Y. Florence, Organizzazioni Speciali

    Google Scholar 

  20. Solari A, Motta A, Mendozzi L et al (2004) Italian version of the Chicago multiscale depression inventory: translation, adaptation and testing in people with multiple sclerosis. Neurol Sci 24(6):375–383

    Article  CAS  PubMed  Google Scholar 

  21. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452

    Article  CAS  PubMed  Google Scholar 

  22. Rao SM, Leo GJ, Bernardin L et al (1991) Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology 41(5):685–691

    Article  CAS  PubMed  Google Scholar 

  23. Amato MP, Portaccio E, Goretti B et al (2006) The Rao’s Brief Repeatable Battery and Stroop Test: normative values with age, education and gender corrections in an Italian population. Mult Scler 12:787–793

    Article  CAS  PubMed  Google Scholar 

  24. Smith SM, Zhang Y, Jenkinson M et al (2002) Accurate, robust and automated longitudinal and cross-sectional brain change analysis. NeuroImage 17:479–489

    Article  PubMed  Google Scholar 

  25. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57

    Article  CAS  PubMed  Google Scholar 

  26. Battaglini M, Jenkinson M, De Stefano N (2012) Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp 33:2062–2071

    Article  PubMed  Google Scholar 

  27. Pruessner JC, Li LM, Serles W et al (2000) Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories. Cereb Cortex 10:433–442

    Article  CAS  PubMed  Google Scholar 

  28. Cavedo E, Redolfi A, Angeloni F et al (2014) The Italian Alzheimer’s disease neuroimaging initiative (I-ADNI): validation of structural MR imaging. J Alzheimer’s Dis 40(4):941–952

    Google Scholar 

  29. Pedraza O, Bowers D, Gilmore R (2004) Asymmetry of the hippocampus and amygdala in MRI volumetric measurements of normal adults. J Int Neuropsychol Soc 10(5):664–678

    Article  PubMed  Google Scholar 

  30. Giorgio A, De Stefano N (2010) Cognition in Multiple Sclerosis: relevance of lesions, Brain atrophy and proton MR spectroscopy. Neurol Sci 31(Suppl 2):S245–S248

    Article  PubMed  Google Scholar 

  31. Rocca MA, Amato MP, De Stefano N et al (2015) Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol 14(3):302–317

    Article  PubMed  Google Scholar 

  32. Hou G, Yang X, Yuan TF (2013) Hippocampal asymmetry: differences in structures and functions. Neurochem Res 38(3):453–460

    Article  CAS  PubMed  Google Scholar 

  33. Hulst HE, Steenwijk MD, Versteeg A et al (2013) Cognitive impairment MS: impact of white matter integrity, gray matter volume, and lesions. Neurology 80(11):1025–1032

    Article  CAS  PubMed  Google Scholar 

  34. Papadopoulou A, Müller-Lenke N, Naegelin Y et al (2013) Contribution of cortical and white matter lesions to cognitive impairment in multiple sclerosis. Mult Scler 19:1290–1296

    Article  PubMed  Google Scholar 

  35. Llufriu S, Martinez-Heras E, Fortea J et al (2014) Cognitive functions in multiple sclerosis: impact of gray matter integrity. Mult Scler 20:424–432

    Article  PubMed  Google Scholar 

  36. Patti F, De Stefano M, Lavorgna L et al (2015) Lesion load may predict long-term cognitive dysfunction in multiple sclerosis patients. PLoS One 10(3):e0120754

    Article  PubMed Central  PubMed  Google Scholar 

  37. Sanfilipo MP, Benedict RHB, Weinstock-Guttman B, Bakshi R (2006) Gray and white matter brain atrophy and neuropsychological impairment in multiple sclerosis. Neurology 66(5):685–692

    Article  PubMed  Google Scholar 

  38. Covey TJ1, Zivadinov R, Shucard JL, Shucard DW (2011) Information processing speed, neural efficiency, and working memory performance in multiple sclerosis: differential relationships with structural magnetic resonance imaging. J Clin Exp Neuropsychol 33(10):1129–1145

  39. Guimara˜es J, Sa´ MJ (2012) Cognitive dysfunction in multiple sclerosis. Front Neurol 3:74

  40. Dineen RA, Vilisaar J, Hlinka J et al (2009) Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain 132:239–249

    Article  CAS  PubMed  Google Scholar 

  41. Mesaros S, Rocca MA, Kacar K et al (2012) Diffusion tensor MRI tractography and cognitive impairment in multiple sclerosis. Neurology 78:969–975

    Article  CAS  PubMed  Google Scholar 

  42. Bisecco A, Rocca MA, Pagani E et al (2015) Connectivity-based parcellation of the thalamus in multiple sclerosis and its implications for cognitive impairment: A multicenter study. Hum Brain Mapp. doi:10.1002/hbm.22809

    PubMed  Google Scholar 

  43. Bonavita S, Gallo A, Sacco R et al (2011) Distributed changes in default-mode resting-state connectivity in multiple sclerosis. Mult Scler 17:411–422

    Article  PubMed  Google Scholar 

  44. Rocca MA, Valsasina P, Absinta M et al (2010) Default-mode network dysfunction and cognitive impairment in progressive MS. Neurology 20(74):1252–1259

    Article  Google Scholar 

  45. Sumowski JF, Wylie GR, Leavitt VM et al (2013) Default network activity is a sensitive and specific biomarker of memory in multiple sclerosis. Mult Scler 19(2):199–208

    Article  PubMed  Google Scholar 

  46. Morey RA, Petty CM, Xu Y et al (2009) Rebuttal to Hasan and Pedraza in comments and controversies: “Improving the reliability of manual and automated methods for hippocampal and amygdala volume measurements”. Neuroimage 48(3):499–500

  47. Cherbuin N, Anstey KJ, Réglade-Meslin C et al (2009) In vivo hippocampal measurement and memory: a comparison of manual tracing and automated segmentation in a large community-based sample. PLoS One 4(4):e5265

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the patients and controls who took part in this study. We thank Dr. Valentina Panetta for providing statistical advice and the radiographer who acquired MRI images: Antonella Paccone (Neurological Institute for Diagnosis and Care “Hermitage Capodimonte”, Naples).

Conflict of interest

R. Sacco, M. Della Corte, S. Esposito, A. d’Ambrosio, R. Docimo, A. Bisecco, L. Lavorgna, D. Corbo, F. Esposito, M. Cirillo report no disclosures. A. Gallo and S. Bonavita received speakers honoraria from Biogen Idec, Novartis, and Merck-Serono. G. Tedeschi has received compensation for consulting services and/or speaking activities from Bayer Schering Pharma, Biogen Idec, Merck Serono, and Teva Pharmaceutical Industries; and receives research support from Biogen Idec, Merck Serono, and Fondazione Italiana Sclerosi Multipla.

Ethical standard

This study was approved by the Local Ethical Committees on human studies and written informed consent from each subject was obtained prior to their enrolment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bonavita.

Additional information

R. Sacco and A. Bisecco contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacco, R., Bisecco, A., Corbo, D. et al. Cognitive impairment and memory disorders in relapsing–remitting multiple sclerosis: the role of white matter, gray matter and hippocampus. J Neurol 262, 1691–1697 (2015). https://doi.org/10.1007/s00415-015-7763-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7763-y

Keywords

Navigation