Skip to main content
Log in

PPNa-DBS for gait and balance disorders in Parkinson’s disease: a double-blind, randomised study

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Gait and balance disorders are the major source of motor disabilities in advanced forms of Parkinson’s disease (PD). Low-frequency stimulation of the pedunculopontine nucleus area (PPNa-DBS) has been recently proposed to treat these symptoms with variable clinical results. To further understand the effects of PPNa-DBS on resistant gait and balance disorders, we performed a randomised double-blind cross-over study in six PD patients. Evaluation included clinical assessment of parkinsonian disability, quality of life and neurophysiological recordings of gait. Evaluations were done 1 month before, 4 and 6 months after surgery with four double-blinded conditions assessed: with and without PPNa-DBS, with and without levodopa treatment. Four patients completed the study and two patients were excluded from the final analysis because of peri-operative adverse events (haematoma, infection). Clinically, the combination of PPNa-DBS and levodopa treatment produced a significant decrease of the freezing episodes. The frequency of falls also decreased in three out of four patients. From a neurophysiological point of view, PPNa-DBS significantly improved the anticipatory postural adjustments and double-stance duration, but not the length and speed of the first step. Interestingly, step length and speed improved after surgery without PPNa-DBS, suggesting that the lesioning effect of PPNa-DBS surgery alleviates parkinsonian akinesia. Quality of life was also significantly improved with PPNa-DBS. These results suggest that PPNa-DBS could improve gait and balance disorders in well-selected PD patients. However, this treatment may be riskier than others DBS surgeries in these patients with an advanced form of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kempster PA, O’Sullivan SS, Holton JL, Revesz T, Lees AJ (2010) Relationships between age and late progression of Parkinson’s disease: a clinico-pathological study. Brain 133:1755–1762

    Article  PubMed  Google Scholar 

  2. Kaltenboeck A, Johnson SJ, Davis MR et al (2012) Direct costs and survival of medicare beneficiaries with early and advanced Parkinson’s disease. Parkinsonism Relat Disord 18:321–326

    Article  CAS  PubMed  Google Scholar 

  3. Bonnet AM, Loria Y, Saint-Hilaire MH, Lhermitte F, Agid Y (1987) Does long-term aggravation of Parkinson’s disease result from nondopaminergic lesions? Neurology 37:1539–1542

    Article  CAS  PubMed  Google Scholar 

  4. Welter ML, Houeto JL, Tezenas du Montcel S et al (2002) Clinical predictive factors of subthalamic stimulation in Parkinson’s disease. Brain 125:575–583

    Article  CAS  PubMed  Google Scholar 

  5. Karachi C, Grabli D, Bernard FA et al (2010) Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Invest 120:2745–2754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Snijders AH, Leunissen I, Bakker M et al (2011) Gait-related cerebral alterations in patients with Parkinson’s disease with freezing of gait. Brain 134:59–72

    Article  PubMed  Google Scholar 

  7. Karachi C, Andre A, Bertasi E, Bardinet E, Lehericy S, Bernard FA (2012) Functional parcellation of the lateral mesencephalus. J Neurosci 32:9396–9401

    Article  CAS  PubMed  Google Scholar 

  8. Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84:5976–5980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123:1767–1783

    Article  PubMed  Google Scholar 

  10. Jahn K, Deutschlander A, Stephan T et al (2008) Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage 39:786–792

    Article  PubMed  Google Scholar 

  11. Bohnen NI, Muller ML, Koeppe RA et al (2009) History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73:1670–1676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Bohnen NI, Frey KA, Studenski SA et al (2013) Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology 81:1611–1616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. NeuroReport 16:1883–1887

    Article  PubMed  Google Scholar 

  14. Stefani A, Lozano AM, Peppe A et al (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130:1596–1607

    Article  PubMed  Google Scholar 

  15. Khan S, Gill SS, Mooney L et al (2012) Combined pedunculopontine-subthalamic stimulation in Parkinson disease. Neurology 78:1090–1095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ferraye MU, Debu B, Fraix V et al (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133:205–214

    Article  CAS  PubMed  Google Scholar 

  17. Moro E, Hamani C, Poon YY et al (2010) Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 133:215–224

    Article  PubMed  Google Scholar 

  18. Thevathasan W, Coyne TJ, Hyam JA et al (2011) Pedunculopontine nucleus stimulation improves gait freezing in Parkinson disease. Neurosurgery 69:1248–1253 (discussion 1254)

  19. Thevathasan W, Cole MH, Graepel CL et al (2012) A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation. Brain 135:1446–1454

    Article  PubMed Central  PubMed  Google Scholar 

  20. Giladi N, Horak FB, Hausdorff JM (2013) Classification of gait disturbances: distinguishing between continuous and episodic changes. Mov Disord 28:1469–1473

    Article  PubMed  Google Scholar 

  21. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    Article  CAS  PubMed  Google Scholar 

  22. Fahn S, Elton RL, Members of UPDRS Development Committee (1987) Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Calne D, Goldstein M (eds) Recent Developments in Parkinson’s disease, vol 2. Macmillan, New Jersey, pp 153–163

    Google Scholar 

  23. Schmidt R, Freidl W, Fazekas F et al (1994) The Mattis Dementia Rating Scale: normative data from 1,001 healthy volunteers. Neurology 44:964–966

    Article  CAS  PubMed  Google Scholar 

  24. Zrinzo L, Zrinzo LV, Tisch S et al (2008) Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain 131:1588–1598

    Article  PubMed  Google Scholar 

  25. Bardinet E, Bhattacharjee M, Dormont D et al (2009) A three-dimensional histological atlas of the human basal ganglia. II. Atlas deformation strategy and evaluation in deep brain stimulation for Parkinson disease. J Neurosurg 110:208–219

    Article  PubMed  Google Scholar 

  26. Martinez-Martin P, Garcia Urra D, del Ser Quijano T et al (1997) A new clinical tool for gait evaluation in Parkinson’s disease. Clin Neuropharmacol 20:183–194

    Article  CAS  PubMed  Google Scholar 

  27. Jenkinson C, Fitzpatrick R, Peto V, Greenhall R, Hyman N (1997) The Parkinson’s Disease Questionnaire (PDQ-39): development and validation of a Parkinson’s disease summary index score. Age Ageing 26:353–357

    Article  CAS  PubMed  Google Scholar 

  28. Pillon B (2002) Neuropsychological assessment for management of patients with deep brain stimulation. Mov Disord 17(Suppl 3):S116–S122

    Article  PubMed  Google Scholar 

  29. Asberg M, Montgomery SA, Perris C, Schalling D, Sedvall G (1978) A comprehensive psychopathological rating scale. Acta Psychiatr Scand Suppl 5–27

  30. Ekman P, Friesen WV (1976) Pictures of facial affect. Consulting Psychologist Press, Palo Alto

  31. Demain A, Westby GW, Fernandez-Vidal S et al (2014) High-level gait and balance disorders in the elderly: a midbrain disease? J Neurol 261:196–206

    Article  PubMed Central  PubMed  Google Scholar 

  32. Chastan N, Do MC, Bonneville F et al (2009) Gait and balance disorders in Parkinson’s disease: impaired active braking of the fall of centre of gravity. Mov Disord 24:188–195

    Article  PubMed  Google Scholar 

  33. Weiss A, Brozgol M, Dorfman M et al (2013) Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings. Neurorehabil Neural Repair 27:742–752

    Article  PubMed  Google Scholar 

  34. Frank JS, Horak FB, Nutt J (2000) Centrally initiated postural adjustments in parkinsonian patients on and off levodopa. J Neurophysiol 84:2440–2448

    CAS  PubMed  Google Scholar 

  35. Hamani C, Moro E, Lozano AM (2011) The pedunculopontine nucleus as a target for deep brain stimulation. J Neural Transm 118:1461–1468

    Article  PubMed  Google Scholar 

  36. Ballanger B, Lozano AM, Moro E et al (2009) Cerebral blood flow changes induced by pedunculopontine nucleus stimulation in patients with advanced Parkinson’s disease: a [(15)O] H2O PET study. Hum Brain Mapp 30:3901–3909

    Article  PubMed  Google Scholar 

  37. Pierantozzi M, Palmieri MG, Galati S et al (2008) Pedunculopontine nucleus deep brain stimulation changes spinal cord excitability in Parkinson’s disease patients. J Neural Transm 115:731–735

    Article  PubMed  Google Scholar 

  38. Butson CR, Cooper SE, Henderson JM, McIntyre CC (2007) Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34:661–670

    Article  PubMed Central  PubMed  Google Scholar 

  39. Takakusaki Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119:293–308

    Article  CAS  PubMed  Google Scholar 

  40. Grabli D, Karachi C, Folgoas E et al (2013) Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J Neurosci 33:11986–11993

    Article  CAS  PubMed  Google Scholar 

  41. Hutchison WD, Allan RJ, Opitz H et al (1998) Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol 44:622–628

    Article  CAS  PubMed  Google Scholar 

  42. Breit S, Lessmann L, Unterbrink D, Popa RC, Gasser T, Schulz JB (2006) Lesion of the pedunculopontine nucleus reverses hyperactivity of the subthalamic nucleus and substantia nigra pars reticulata in a 6-hydroxydopamine rat model. Eur J Neurosci 24:2275–2282

    Article  CAS  PubMed  Google Scholar 

  43. Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438

    Article  CAS  PubMed  Google Scholar 

  44. Hariz MI (2002) Complications of deep brain stimulation surgery. Mov Disord 17(Suppl 3):S162–S166

    Article  PubMed  Google Scholar 

  45. Welter ML, Schupbach M, Czernecki V et al (2014) Optimal target localization for subthalamic stimulation in patients with Parkinson disease. Neurology 82:1352–1361

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Institut National de la Recherche Médicale (INSERM), the ‘Institut du Cerveau et de la Moelle Epinière’ (ICM) Foundation, the ‘Régie Autonome des Transports Parisiens’ (RATP), the ‘Fondation pour la Recherche Medicale’ (FRM) and the programme ‘Investissements d’avenir’ (ANR-10-IAIHU-06). We extend our deepest thanks to all the patients who participated in this research with great dedication.

Conflicts of interest

This study was sponsored by the INSERM. ML Welter received research support from the ‘Institut du Cerveau de la Moelle épinière’ (ICM) Foundation and the Agence Nationale de la Recherche, and consulting fees from Medtronic, Boston Scientific and Teva-Lundbeck. A Demain received a research grant from the ICM Foundation. C Ewenzcyk received a research grant (doctoral fellowship) from the ‘Fondation pour la Recherche Médicale’. V Czernecki reports no financial disclosure. B Lau reports no financial disclosure. A El Helou reports no financial disclosure. H Belaid reports no financial disclosure. J Yelnik reports no financial disclosure. C François reports no financial disclosure. E Bardinet received a research grant from Medtronic. C Karachi reports no financial disclosure. D Grabli received lectures fees and travel grants from Lundbeck, Teva, Novartis, UCB, Boerhinger-Ingelheim and AbbVIe. He has consulting activity for AbbVie, and research grants from the Direction Générale de l’Organisation des Soins (DGOS), Institut National de la Santé et de la Recherche Médicale (INSERM), Michael J. Fox Foundation for Parkinson Research, France Parkinson association and the French association for Essential Tremor (APTES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laure Welter.

Additional information

ClinicalTrials.gov Registration: NCT02055261.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welter, ML., Demain, A., Ewenczyk, C. et al. PPNa-DBS for gait and balance disorders in Parkinson’s disease: a double-blind, randomised study. J Neurol 262, 1515–1525 (2015). https://doi.org/10.1007/s00415-015-7744-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7744-1

Keywords

Navigation