Skip to main content

Advertisement

Log in

Preoperative brain metabolism and quality of life after subthalamic nucleus stimulation in Parkinson’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Subthalamic nucleus deep brain stimulation (STN-DBS) has been proven to improve health-related quality of life (HRQoL) in patients with Parkinson’s disease (PD) presenting medically refractory motor complications and dyskinesia. However, some patients fail to benefit from STN-DBS despite rigorous preoperative selection. We postulated that they have a particular, clinically ineloquent, brain metabolism before surgery. We divided 40 stimulated PD patients into two groups (responders vs. nonresponders) depending on whether they reported or not a clinically significant improvement in their quality of life 1 year after surgery. We retrospectively compared their preoperative brain metabolism on the basis of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) scans. We also analyzed their neuropsychological and psychiatric profiles before and after surgery. All 40 patients met the STN-DBS selection criteria, but only 50 % of them had significantly improved 1 year after surgery. Preoperative PET scans showed that metabolism was higher in the left insula, both inferior frontal gyri and left precentral gyrus in nonresponders than in responders. Clinically, postoperative motor scores were similar in both groups, but a worsening of the depression score was observed among nonresponders. PET imaging revealed that nonresponders were characterized by distinctive brain functioning pre-surgery, in regions involved in associative and limbic circuits, as a result of PD-related degeneration. STN-DBS may have interfered with this already abnormal circuitry, leading to the occurrence of complex nonmotor symptoms reducing quality of life. Preoperative brain metabolism could be a useful biomarker for anticipating STN-DBS efficacy in terms of HRQoL in the context of advanced PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bronstein JM, Tagliati M, Alterman RL et al (2011) Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol 68:165. doi:10.1001/archneurol.2010.260

    Article  PubMed Central  PubMed  Google Scholar 

  2. Limousin P, Krack P, Pollak P et al (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s Disease. N Engl J Med 339:1105–1111. doi:10.1056/NEJM199810153391603

    Article  CAS  PubMed  Google Scholar 

  3. Chaudhuri KR, Healy DG, Schapira AH (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5:235–245. doi:10.1016/S1474-4422(06)70373-8

    Article  PubMed  Google Scholar 

  4. Temel Y, Kessels A, Tan S et al (2006) Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disord 12:265–272. doi:10.1016/j.parkreldis.2006.01.004

    Article  PubMed  Google Scholar 

  5. Schrag A, Jahanshahi M, Quinn N (2000) What contributes to quality of life in patients with Parkinson’s disease? J Neurol Neurosurg Psychiatry 69:308–312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Martínez-Martín P (1998) An introduction to the concept of “quality of life in Parkinson’s disease”. J Neurol 245(Suppl 1):S2–S6

    Article  PubMed  Google Scholar 

  7. Martinez-Martin P, Jeukens-Visser M, Lyons KE et al (2011) Health-related quality-of-life scales in Parkinson’s disease: critique and recommendations. Mov Disord 26:2371–2380. doi:10.1002/mds.23834

    Article  PubMed  Google Scholar 

  8. Kleiner-Fisman G, Herzog J, Fisman DN et al (2006) Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord 21(Suppl 14):S290–S304. doi:10.1002/mds.20962

    Article  PubMed  Google Scholar 

  9. Drapier S, Raoul S, Drapier D et al (2005) Only physical aspects of quality of life are significantly improved by bilateral subthalamic stimulation in Parkinson’s disease. J Neurol 252:583–588. doi:10.1007/s00415-005-0704-4

    Article  PubMed  Google Scholar 

  10. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Deuschl G, Schüpbach M, Knudsen K et al (2013) Stimulation of the subthalamic nucleus at an earlier disease stage of Parkinson’s disease: concept and standards of the EARLYSTIM-study. Parkinsonism Relat Disord 19:56–61. doi:10.1016/j.parkreldis.2012.07.004

    Article  PubMed  Google Scholar 

  12. Langston JW, Widner H, Goetz CG et al (1992) Core assessment program for intracerebral transplantations (CAPIT). Mov Disord 7:2–13. doi:10.1002/mds.870070103

    Article  CAS  PubMed  Google Scholar 

  13. Mattis S (1988) Dementia rating scale professional manual. Psychological Assessment Resources Inc., Odessa, FL

  14. Stroop JR (1935) Studies of interferences in serial verbal reactions. J Exp Psychol 18:643–662

  15. Reitan R (1958) Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Ski 8:271–276. doi:10.2466/PMS.8.7.271-276

    Article  Google Scholar 

  16. Nelson HE (1976) A modified card sorting test sensitive to frontal lobe defects. Cortex 12:313–324. doi:10.1016/S0010-9452(76)80035-4

    Article  CAS  PubMed  Google Scholar 

  17. Cardebat D, Doyon B, Puel M et al (1990) Evocation lexicale formelle et sémantique chez des sujets normaux. Performances et dynamiques de production en fonction du sexe, de l’âge et du niveau d’étude. Acta Neurol Belg 90:207–217

    CAS  PubMed  Google Scholar 

  18. Montgomery SA, Asberg M (1979) A new depression scale designed to be sensitive to change. Br J Psychiatry J Ment Sci 134:382–389

    Article  CAS  Google Scholar 

  19. Marin RS, Biedrzycki RC, Firinciogullari S (1991) Reliability and validity of the apathy evaluation scale. Psychiatry Res 38:143–162. doi:10.1016/0165-1781(91)90040-V

    Article  CAS  PubMed  Google Scholar 

  20. Peto V, Jenkinson C, Fitzpatrick R (1998) PDQ-39: a review of the development, validation and application of a Parkinson’s disease quality of life questionnaire and its associated measures. J Neurol 245(Suppl 1):S10–S14

    Article  PubMed  Google Scholar 

  21. Peto V, Jenkinson C, Fitzpatrick R (2001) Determining minimally important differences for the PDQ-39 Parkinson’s disease questionnaire. Age Ageing 30:299–302

    Article  CAS  PubMed  Google Scholar 

  22. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates

  23. Daniels C, Krack P, Volkmann J et al (2011) Is improvement in the quality of life after subthalamic nucleus stimulation in Parkinson’s disease predictable? Mov Disord 26:2516–2521. doi:10.1002/mds.23907

    Article  PubMed  Google Scholar 

  24. Floden D, Cooper SE, Griffith SD, Machado AG (2014) Predicting quality of life outcomes after subthalamic nucleus deep brain stimulation. Neurology 83:1627–1633. doi:10.1212/WNL.0000000000000943

    Article  PubMed  Google Scholar 

  25. Martínez-Martín P, Rodríguez-Blázquez C, Forjaz MJ et al (2014) Relationship between the MDS-UPDRS domains and the health-related quality of life of Parkinson’s disease patients. Eur J Neurol. doi:10.1111/ene.12349

    PubMed  Google Scholar 

  26. Soh S-E, Morris ME, McGinley JL (2011) Determinants of health-related quality of life in Parkinson’s disease: a systematic review. Parkinsonism Relat Disord 17:1–9. doi:10.1016/j.parkreldis.2010.08.012

    Article  PubMed  Google Scholar 

  27. Barone P, Antonini A, Colosimo C et al (2009) The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord 24:1641–1649. doi:10.1002/mds.22643

    Article  PubMed  Google Scholar 

  28. Huang C, Tang C, Feigin A et al (2007) Changes in network activity with the progression of Parkinson’s disease. Brain 130:1834–1846. doi:10.1093/brain/awm086

    Article  PubMed Central  PubMed  Google Scholar 

  29. Benzinger TLS, Blazey T, Jack CR Jr et al (2013) Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease. Proc Natl Acad Sci USA 110:E4502–E4509. doi:10.1073/pnas.1317918110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Luo F, Rustay NR, Ebert U et al (2012) Characterization of 7- and 19-month-old Tg2576 mice using multimodal in vivo imaging: limitations as a translatable model of Alzheimer’s disease. Neurobiol Aging 33:933–944. doi:10.1016/j.neurobiolaging.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  31. Biundo R, Calabrese M, Weis L et al (2013) Anatomical correlates of cognitive functions in early Parkinson’s disease patients. PLoS One 8:e64222. doi:10.1371/journal.pone.0064222

    Article  PubMed Central  PubMed  Google Scholar 

  32. Tucker AM, Stern Y (2011) Cognitive reserve in aging. Curr Alzheimer Res 8:354–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Le Jeune F, Péron J, Grandjean D et al (2010) Subthalamic nucleus stimulation affects limbic and associative circuits: a PET study. Eur J Nucl Med Mol Imaging 37:1512–1520. doi:10.1007/s00259-010-1436-y

    Article  PubMed  Google Scholar 

  34. Robert G, Le Jeune F, Lozachmeur C et al (2012) Apathy in patients with Parkinson disease without dementia or depression: a PET study. Neurology 79:1155–1160. doi:10.1212/WNL.0b013e3182698c75

    Article  CAS  PubMed  Google Scholar 

  35. Benoit M, Robert PH (2011) Imaging correlates of apathy and depression in Parkinson’s disease. J Neurol Sci 310:58–60. doi:10.1016/j.jns.2011.07.006

    Article  PubMed  Google Scholar 

  36. Fitzgerald PB, Laird AR, Maller J, Daskalakis ZJ (2008) A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp 29:683–695. doi:10.1002/hbm.20426

    Article  PubMed Central  PubMed  Google Scholar 

  37. Mertens TE (1993) Estimating the effects of misclassification. Lancet 342:418–421

    Article  CAS  PubMed  Google Scholar 

  38. Bland JM, Altman DG (1994) Some examples of regression towards the mean. BMJ 309:780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the members of the neurology department for their help in gathering and collating the data.

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standard

Written informed consent was obtained from each participant, and the study met the ethical standards of the institutional ethical standards committee on human experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Langner-Lemercier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langner-Lemercier, S., Drapier, S., Naudet, F. et al. Preoperative brain metabolism and quality of life after subthalamic nucleus stimulation in Parkinson’s disease. J Neurol 262, 881–889 (2015). https://doi.org/10.1007/s00415-015-7647-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7647-1

Keywords

Navigation