Skip to main content
Log in

MRI measures of neurodegeneration in multiple sclerosis: implications for disability, disease monitoring, and treatment

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) techniques, such as T2-weighted and gadolinium-enhanced T1-weighted sequences, have long been used to diagnose multiple sclerosis (MS). However, these methods are limited in their ability to depict underlying disease pathology. A PubMed literature search was conducted to identify the publications discussing MRI in MS from 2010 to 2013, using the medical subject heading terms: “multiple sclerosis” and “grey/gray matter”, “brain atrophy”, “grey/gray matter atrophy”, “normal appearing white matter,” and “cortical lesions.” Recent proceedings of conferences on MRI were also used to identify emerging techniques. MRI-derived metrics can assess the microstructural, metabolic, and functional changes that occur in newly formed lesions and allow further characterization of diffuse degeneration in different central nervous system compartments across MS phenotypes. Advanced imaging techniques aim to complement our understanding of MS disease pathophysiology, which may facilitate the identification of markers that could be used to predict the clinical outcomes of agents in development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geurts JJ, Calabrese M, Fisher E, Rudick RA (2012) Measurement and clinical effect of grey matter pathology in multiple sclerosis. Lancet Neurol 11:1082–1092

    Article  PubMed  Google Scholar 

  2. Moll NM, Rietsch AM, Thomas S, Ransohoff AJ, Lee JC, Fox R, Chang A, Ransohoff RM, Fisher E (2011) Multiple sclerosis normal-appearing white matter: pathology-imaging correlations. Ann Neurol 70:764–773

    Article  PubMed Central  PubMed  Google Scholar 

  3. Filippi M, Agosta F, Rocca MA (2007) Regional assessment of brain atrophy: a novel approach to achieve a more complete picture of tissue damage associated with central nervous system disorders? Am J Neuroradiol 28:260–261

    PubMed  Google Scholar 

  4. Khaleeli Z, Sastre-Garriga J, Ciccarelli O, Miller DH, Thompson AJ (2007) Magnetisation transfer ratio in the normal appearing white matter predicts progression of disability over 1 year in early primary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 78:1076–1082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Fisniku LK, Chard DT, Jackson JS, Anderson VM, Altmann DR, Miszkiel KA, Thompson AJ, Miller DH (2008) Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann Neurol 64:247–254

    Article  PubMed  Google Scholar 

  6. Calabrese M, De Stefano N, Atzori M, Bernardi V, Mattisi I, Barachino L, Morra A, Rinaldi L, Romualdi C, Perini P, Battistin L, Gallo P (2007) Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Arch Neurol 64:1416–1422

    Article  PubMed  Google Scholar 

  7. Inglese M, Oesingmann N, Casaccia P, Fleysher L (2011) Progressive multiple sclerosis and gray matter pathology: an MRI perspective. Mt Sinai J Med 78:258–267

    Article  PubMed Central  PubMed  Google Scholar 

  8. Filippi M, Agosta F, Spinelli EG, Rocca MA (2013) Imaging resting state brain function in multiple sclerosis. J Neurol 260:1709–1713

    Article  PubMed  Google Scholar 

  9. Iannucci G, Tortorella C, Rovaris M, Sormani MP, Comi G, Filippi M (2000) Prognostic value of MR and magnetization transfer imaging findings in patients with clinically isolated syndromes suggestive of multiple sclerosis at presentation. Am J Neuroradiol 21:1034–1038

    CAS  PubMed  Google Scholar 

  10. Filippi M, Rovaris M, Rocca MA, Sormani MP, Wolinsky JS, Comi G (2001) Glatiramer acetate reduces the proportion of new MS lesions evolving into “black holes”. Neurology 57:731–733

    Article  CAS  PubMed  Google Scholar 

  11. Sbardella E, Tona F, Petsas N, Pantano P (2013) DTI measurements in multiple sclerosis: evaluation of brain damage and clinical implications. Mult Scler Int 2013:671730

    PubMed Central  PubMed  Google Scholar 

  12. Gallo A, Rovaris M, Riva R, Ghezzi A, Benedetti B, Martinelli V, Falini A, Comi G, Filippi M (2005) Diffusion-tensor magnetic resonance imaging detects normal-appearing white matter damage unrelated to short-term disease activity in patients at the earliest clinical stage of multiple sclerosis. Arch Neurol 62:803–808

    Article  PubMed  Google Scholar 

  13. De Stefano N, Narayanan S, Francis GS, Arnaoutelis R, Tartaglia MC, Antel JP, Matthews PM, Arnold DL (2001) Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 58:65–70

    Article  PubMed  Google Scholar 

  14. Narayanan S, De Stefano N, Francis GS, Arnaoutelis R, Caramanos Z, Collins DL, Pelletier D, Arnason BGW, Antel JP, Arnold DL (2001) Axonal metabolic recovery in multiple sclerosis patients treated with interferon beta-1b. J Neurol 248:979–986

    Article  CAS  PubMed  Google Scholar 

  15. Mellergard J, Tisell A, Dahlqvist LO, Blystad I, Landtblom AM, Blennow K, Olsson B, Dahle C, Ernerudh J, Lundberg P, Vrethem M (2012) Association between change in normal appearing white matter metabolites and intrathecal inflammation in natalizumab-treated multiple sclerosis. PLoS One 7:e44739

    Article  PubMed Central  PubMed  Google Scholar 

  16. Paty DW, Li DK (2001) Interferon beta-lb is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. 1993 [classical article]. Neurology 57:S10–S15

    CAS  PubMed  Google Scholar 

  17. Khan O, Shen Y, Caon C, Bao F, Ching W, Reznar M, Buccheister A, Hu J, Latif Z, Tselis A, Lisak R (2005) Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate in relapsing-remitting multiple sclerosis. Mult Scler 11:646–651

    Article  CAS  PubMed  Google Scholar 

  18. Khan O, Caon C, Zak I et al (2008) Randomized, prospective, rater-blinded, four-year, pilot study to compare the effect of daily versus every-other-day glatiramer acetate 20 mg subcutaneous injections in relapsing-remitting multiple sclerosis. Mult Scler 14:902

    Google Scholar 

  19. Rocca MA, Valsasina P, Damjanovic D, Horsfield MA, Mesaros S, Stosic-Opincal T, Drulovic J, Filippi M (2013) Voxel-wise mapping of cervical cord damage in multiple sclerosis patients with different clinical phenotypes. J Neurol Neurosurg Psychiatry 84:35–41

    Article  PubMed  Google Scholar 

  20. Losseff N, Kingsley D, McDonald W, Miller D, Thompson A (1996) Clinical and magnetic resonance imaging predictors of disability in primary and secondary progressive multiple sclerosis. Mult Scler 1:218–222

    CAS  PubMed  Google Scholar 

  21. Horsfield MA, Sala S, Neema M, Absinta M, Bakshi A, Sormani MP, Rocca MA, Bakshi R, Filippi M (2010) Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: application in multiple sclerosis. NeuroImage 50:446–455

    Article  PubMed Central  PubMed  Google Scholar 

  22. Rocca M, Horsfield M, Sala S, Copetti M, Valsasina P, Mesaros S, Martinelli V, Caputo D, Stosic-Opincal T, Drulovic J, Comi G, Filippi M (2011) A multicenter assessment of cervical cord atrophy among MS clinical phenotypes. Neurology 76:2096–2102

    Article  CAS  PubMed  Google Scholar 

  23. Valsasina P, Rocca MA, Horsfield MA, Absinta M, Messina R, Caputo D, Comi G, Filippi M (2013) Regional cervical cord atrophy and disability in multiple sclerosis: a voxel-based analysis. Radiology 266:853–861

    Article  PubMed  Google Scholar 

  24. Miller DH, Barkhof F, Frank JA, Parker GJM, Thompson AJ (2002) Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 125:1676–1695

    Article  PubMed  Google Scholar 

  25. Bermel RA, Bakshi R (2006) The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol 5:158–170

    Article  PubMed  Google Scholar 

  26. DeStefano N, Giorgio A, Battaglini M, Rovaris M, Sormani M, Barkhof F, Korteweg T, Enzinger C, Fazekas F, Calabrese M, Dinacci D, Tedeschi G, Gass A, Montalban X, Rovira A, Thompson A, Comi G, Miller D, Filippi M (2010) Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology 74:1868–1876

    Article  CAS  Google Scholar 

  27. Durand-Dubief F, Belaroussi B, Armspach JP, Dufour M, Roggerone S, Vukusic S, Hannoun S, Sappey-Marinier D, Confavreux C, Cotton F (2012) Reliability of longitudinal brain volume loss measurements between 2 sites in patients with multiple sclerosis: comparison of 7 quantification techniques. Am J Neuroradiol 33:1918–1924

    Article  CAS  PubMed  Google Scholar 

  28. Khan O, Bao F, Shah M, Caon C, Tselis A, Bailey R, Silverman B, Zak I (2012) Effect of disease-modifying therapies on brain volume in relapsing-remitting multiple sclerosis: results of a five-year brain MRI study. J Neurol Sci 312:7–12

    Article  PubMed  Google Scholar 

  29. Portaccio E, Stromillo ML, Goretti B, Hakiki B, Giorgio A, Rossi F, De Leucio A, De Stefano N, Amato MP (2013) Natalizumab may reduce cognitive changes and brain atrophy rate in relapsing-remitting multiple sclerosis: a prospective, non-randomized pilot study. Eur J Neurol 20:986–990

    Article  CAS  PubMed  Google Scholar 

  30. Radue EW, O’Connor P, Polman CH, Hohlfeld R, Calabresi P, Selmaj K, Mueller-Lenke N, Agoropoulou C, Holdbrook F, de Vera A, Zhang-Auberson L, Francis G, Burtin P, Kappos L (2012) Impact of fingolimod therapy on magnetic resonance imaging outcomes in patients with multiple sclerosis. Arch Neurol 69:1259–1269

    Article  PubMed  Google Scholar 

  31. Comi G, Jeffery D, Kappos L, Montalban X, Boyko A, Rocca MA, Filippi M (2012) Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J Med 366:1000–1009

    Article  CAS  PubMed  Google Scholar 

  32. Lansley J, Mataix-Cols D, Grau M, Radua J, Sastre-Garriga J (2013) Localized grey matter atrophy in multiple sclerosis: a meta-analysis of voxel-based morphometry studies and associations with functional disability. Neurosci Biobehav Rev 37:819–830

    Article  CAS  PubMed  Google Scholar 

  33. Audoin B, Zaaraoui W, Reuter F, Rico A, Malikova I, Confort-Gouny S, Cozzone PJ, Pelletier J, Ranjeva JP (2010) Atrophy mainly affects the limbic system and the deep grey matter at the first stage of multiple sclerosis. J Neurol Neurosurg Psychiatry 81:690–695

    Article  PubMed  Google Scholar 

  34. Fisher E, Lee JC, Nakamura K, Rudick RA (2008) Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 64:255–265

    Article  PubMed  Google Scholar 

  35. Nakamura K, Fisher E (2009) Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients. NeuroImage 44:769–776

    Article  PubMed Central  PubMed  Google Scholar 

  36. Vrenken H, Jenkinson M, Horsfield MA, Battaglini M, van Schijndel RA, Rostrup E, Geurts JJ, Fisher E, Zijdenbos A, Ashburner J, Miller DH, Filippi M, Fazekas F, Rovaris M, Rovira A, Barkhof F, De Stefano N (2012) Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis. J Neurol 260:2458–2471

    Article  PubMed Central  PubMed  Google Scholar 

  37. Ceccarelli A, Jackson JS, Tauhid S, Arora A, Gorky J, Dell’Oglio E, Bakshi A, Chitnis T, Khoury SJ, Weiner HL, Guttmann CR, Bakshi R, Neema M (2012) The impact of lesion in-painting and registration methods on voxel-based morphometry in detecting regional cerebral gray matter atrophy in multiple sclerosis. Am J Neuroradiol 33:1579–1585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Riccitelli G, Rocca MA, Forn C, Colombo B, Comi G, Filippi M (2011) Voxelwise assessment of the regional distribution of damage in the brains of patients with multiple sclerosis and fatigue. Am J Neuroradiol 32:874–879

    Article  CAS  PubMed  Google Scholar 

  39. Benedict RH, Hulst HE, Bergsland N, Schoonheim MM, Dwyer MG, Weinstock-Guttman B, Geurts JJ, Zivadinov R (2013) Clinical significance of atrophy and white matter mean diffusivity within the thalamus of multiple sclerosis patients. Mult Scler 19:1478–1484

    Article  PubMed  Google Scholar 

  40. Bendfeldt K, Egger H, Nichols TE, Loetscher P, Denier N, Kuster P, Traud S, Mueller-Lenke N, Naegelin Y, Gass A, Kappos L, Radue EW, Borgwardt SJ (2010) Effect of immunomodulatory medication on regional gray matter loss in relapsing-remitting multiple sclerosis––a longitudinal MRI study. Brain Res 1325:174–182

    Article  CAS  PubMed  Google Scholar 

  41. Filippi M, Rocca MA, Pagani E, De Stefano N, Jeffery D, Kappos L, Montalban X, Boyko AN, Comi G (2013) Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J Neurol Neurosurg. doi:10.1136/jnnp-2013-306132

    Google Scholar 

  42. Geurts JJ, Pouwels PJ, Uitdehaag BM, Polman CH, Barkhof F, Castelijns JA (2005) Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 236:254–260

    Article  PubMed  Google Scholar 

  43. Filippi M, Rocca MA, Benedict RH, DeLuca J, Geurts JJ, Rombouts SA, Ron M, Comi G (2010) The contribution of MRI in assessing cognitive impairment in multiple sclerosis. Neurology 75:2121–2128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Rinaldi F, Calabrese M, Seppi D, Puthenparampil M, Perini P, Gallo P (2012) Natalizumab strongly suppresses cortical pathology in relapsing-remitting multiple sclerosis. Mult Scler 18:1760–1767

    Article  CAS  PubMed  Google Scholar 

  45. Nelson F, Poonawalla AH, Hou P, Huang F, Wolinsky JS, Narayana PA (2007) Improved identification of intracortical lesions in multiple sclerosis with phase-sensitive inversion recovery in combination with fast double inversion recovery MR imaging. Am J Neuroradiol 28:1645–1649

    Article  CAS  PubMed  Google Scholar 

  46. Nelson F, Poonawalla A, Hou P, Wolinsky J, Narayana P (2008) 3D MPRAGE improves classification of cortical lesions in multiple sclerosis. Mult Scler 14:1214–1219

    Article  CAS  PubMed  Google Scholar 

  47. Tallantyre EC, Morgan PS, Dixon JE, Al Radaideh A, Brookes MJ, Morris PG, Evangelou N (2010) 3 Tesla and 7 Tesla MRI of multiple sclerosis cortical lesions. J Magn Reson Imaging 32:971–977

    Article  PubMed  Google Scholar 

  48. Filippi M, Evangelou N, Kangarlu A, Inglese M, Mainero C, Horsfield MA, Rocca MA (2014) Ultra-high-field MR imaging in multiple sclerosis. J Neurol Neurosurg Psychiatry 85(1):60–66

    Article  PubMed  Google Scholar 

  49. Filippi M, Preziosa P, Pagani E, Copetti M, Mesaros S, Colombo B, Horsfield MA, Falini A, Comi G, Lassmann H, Rocca MA (2013) Microstructural magnetic resonance imaging of cortical lesions in multiple sclerosis. Mult Scler 19:418–426

    Article  CAS  PubMed  Google Scholar 

  50. Filippi M, Riccitelli G, Mattioli F, Capra R, Stampatori C, Pagani E, Valsasina P, Copetti M, Falini A, Comi G, Rocca MA (2012) Multiple sclerosis: effects of cognitive rehabilitation on structural and functional MR imaging measures––an explorative study. Radiology 262:932–940

    Article  PubMed  Google Scholar 

  51. Leavitt VM, Wylie GR, Girgis PA, DeLuca J, Chiaravalloti ND (2012) Increased functional connectivity within memory networks following memory rehabilitation in multiple sclerosis. Brain Imaging Behav. doi:10.1007/s11682-012-9183-2

    Google Scholar 

  52. Sastre-Garriga J, Alonso J, Renom M, Arevalo MJ, Gonzalez I, Galan I, Montalban X, Rovira A (2011) A functional magnetic resonance proof of concept pilot trial of cognitive rehabilitation in multiple sclerosis. Mult Scler 17:457–467

    Article  CAS  PubMed  Google Scholar 

  53. Sethi V, Yousry TA, Muhlert N, Ron M, Golay X, Wheeler-Kingshott C, Miller DH, Chard DT (2012) Improved detection of cortical MS lesions with phase-sensitive inversion recovery MRI. J Neurol Neurosurg Psychiatry 83:877–882

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Lisa Grauer, MSc, from Chameleon Communications International, who provided editorial support with funding from Teva Pharmaceuticals Industries Ltd., Petach Tikva, Israel.

Conflicts of interest

Massimo Filippi serves on scientific advisory boards for Teva Pharmaceutical Industries Ltd.; has received funding for travel from Bayer Schering Pharma, Biogen Idec, Merck Serono, and Teva Pharmaceutical Industries Ltd.; serves as a consultant to Bayer Schering Pharma, Biogen Idec, Merck Serono, Novartis, Pepgen Corporation, and Teva Pharmaceutical Industries Ltd.; serves on speakers’ bureaus for Bayer Schering Pharma, Biogen Idec, Merck Serono, and Teva Pharmaceutical Industries Ltd.; and receives research support from Bayer Schering Pharma, Biogen Idec, Novartis, Merck Serono, Teva Pharmaceutical Industries Ltd., Fondazione Italiana Sclerosi Multipla, the Italian Ministry of Health, CurePSP, and the Gossweiler Foundation (Switzerland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Filippi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippi, M. MRI measures of neurodegeneration in multiple sclerosis: implications for disability, disease monitoring, and treatment. J Neurol 262, 1–6 (2015). https://doi.org/10.1007/s00415-014-7340-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-014-7340-9

Keywords

Navigation