Skip to main content
Log in

Identifying hypothermia death in a mouse model by ATR-FTIR

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The identification of hypothermia death (HD) is difficult for cadavers, especially the distinction from death due to alternative causes. A large number of studies have shown that brown adipose tissue (BAT) plays critical roles in thermoregulation of mammals. In this study, BAT of mice was used for the discrimination of HD using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). A modified mouse HD model conducted by Feeney DM was used in this study to obtain infrared spectra of BAT. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to establish discrimination models. The PLS-DA and OPLS-DA models exhibit prominent discriminative efficiency, and the accuracy of HD identification using fingerprint regions and ratios of absorption intensity is near 100% in both the calibration and validation sets. Our preliminary study suggests that BAT may be an extremely effective target tissue for identification of cadavers of HD, and ATR-FTIR spectra combined with chemometrics have also shown potential for cadaver identification in forensic practice in a fast and accurate manner.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are presented in the figures, and they are available from the corresponding authors upon reasonable request.

References

  1. Paal P, Pasquier M, Darocha T et al (2022) Accidental hypothermia: 2021 Update, Int J Environ Res Public Health 19(1). https://doi.org/10.3390/ijerph19010501

  2. Turk EE (2010) Hypothermia. Forensic Sci Med Pathol 6(2):106–115. https://doi.org/10.1007/s12024-010-9142-4

    Article  PubMed  Google Scholar 

  3. Wiberg S, Mortensen AF, Kjaergaard J et al (2021) Accidental hypothermia in Denmark: a nationwide cohort study of incidence and outcomes. BMJ Open 11(5):e046806. https://doi.org/10.1136/bmjopen-2020-046806

    Article  PubMed  PubMed Central  Google Scholar 

  4. Palmiere C, Teresinski G, Hejna P (2014) Postmortem diagnosis of hypothermia. Int J Legal Med 128(4):607–14. https://doi.org/10.1007/s00414-014-0977-1

    Article  PubMed  Google Scholar 

  5. ClarkR KH (2016) Stoppacher, gastric mucosal petechial hemorrhages (Wischnewsky Lesions), hypothermia, and diabetic ketoacidosis. Am J Forensic Med Pathol 37(3):165–169. https://doi.org/10.1097/PAF.0000000000000248

    Article  Google Scholar 

  6. Hyodoh H, Watanabe S, Katada R et al (2013) Postmortem computed tomography lung findings in fatal of hypothermia. Forensic Sci Int 231(1–3):190–194. https://doi.org/10.1016/j.forsciint.2013.05.011

    Article  PubMed  Google Scholar 

  7. Zatopkova L, Hejna P, Palmiere C et al (2017) Hypothermia provokes hemorrhaging in various core muscle groups: how many of them could we have missed? Int J Legal Med 131(5):1423–1428. https://doi.org/10.1007/s00414-017-1596-4

    Article  PubMed  Google Scholar 

  8. Avellanas Chavala ML, Ayala Gallardo M, Soteras Martínez Í et al (2019) Management of accidental hypothermia: a narrative review. Med Intensiva (Engl Ed) 43(9):556–568. https://doi.org/10.1016/j.medin.2018.11.008

  9. Bańka K, Teresiński G, Buszewicz G et al (2013) Glucocorticosteroids as markers of death from hypothermia. Forensic Sci Int 229(1–3):60–65. https://doi.org/10.1016/j.forsciint.2013.03.003

    Article  CAS  PubMed  Google Scholar 

  10. Zhang M, Wang N, Guo XS et al (2022) Candidate biomarkers in brown adipose tissue for post-mortem diagnosis of fatal hypothermia. Int J Legal Med. https://doi.org/10.1007/s00414-022-02897-9

    Article  PubMed  Google Scholar 

  11. Banka K, TeresinskiG G (2014) Buszewicz, Free fatty acids as markers of death from hypothermia. Forensic Sci Int 234:79–85. https://doi.org/10.1016/j.forsciint.2013.10.028

    Article  CAS  PubMed  Google Scholar 

  12. Bal NC, Singh S, Reis FCG et al (2017) Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice. J Biol Chem 292(40):16616–16625. https://doi.org/10.1074/jbc.M117.790451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brychta RJ, Chen KY (2017) Cold-induced thermogenesis in humans. Eur J Clin Nutr 71(3):345–352. https://doi.org/10.1038/ejcn.2016.223

    Article  CAS  PubMed  Google Scholar 

  14. Sakers A, De Siqueira MK, Seale P et al (2022) Adipose-tissue plasticity in health and disease. Cell 185(3):419–446. https://doi.org/10.1016/j.cell.2021.12.016

    Article  CAS  PubMed  Google Scholar 

  15. Wang TA, Teo CF, Åkerblom M et al (2019) Thermoregulation via temperature-dependent PGD(2) production in mouse preoptic area. Neuron 103(2):309-322.e7. https://doi.org/10.1016/j.neuron.2019.04.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beć KB, Grabska J, Huck CW (2020) Biomolecular and bioanalytical applications of infrared spectroscopy - a review. Anal Chim Acta 1133:150–177. https://doi.org/10.1016/j.aca.2020.04.015

    Article  CAS  PubMed  Google Scholar 

  17. Berthomieu C, Hienerwadel R (2009) Fourier transform infrared (FTIR) spectroscopy. Photosynth Res 101(2–3):157–70. https://doi.org/10.1007/s11120-009-9439-x

    Article  CAS  PubMed  Google Scholar 

  18. Wei C, Wang J (2021) A rapid and nondestructive approach for forensic identification of car bumper splinters using attenuated total reflectance Fourier transform infrared spectroscopy and chemometrics. J Forensic Sci 66(2):583–593. https://doi.org/10.1111/1556-4029.14606

    Article  CAS  PubMed  Google Scholar 

  19. Lin H, Guo X, Luo Y et al (2020) Postmortem diagnosis of fatal hypothermia by Fourier transform infrared spectroscopic analysis of edema fluid in formalin-fixed, paraffin-embedded lung tissues. J Forensic Sci 65(3):846–854. https://doi.org/10.1111/1556-4029.14260

    Article  CAS  PubMed  Google Scholar 

  20. Yang X, Ou Q, Yang W et al (2021) Diagnosis of liver cancer by FTIR spectra of serum. Spectrochim Acta A Mol Biomol Spectrosc 263:120181. https://doi.org/10.1016/j.saa.2021.120181

    Article  CAS  PubMed  Google Scholar 

  21. Theophilou G, Lima KM, Martin-Hirsch PL et al (2016) ATR-FTIR spectroscopy coupled with chemometric analysis discriminates normal, borderline and malignant ovarian tissue: classifying subtypes of human cancer. Analyst 141(2):585–594. https://doi.org/10.1039/c5an00939a

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Z, Lin HC, Li ZD et al (2021) Identification of fatal hypothermia via attenuated total reflection Fourier transform infrared spectroscopy of rabbit vitreous humour. Aust J Forensic Sci 53(1):27–39. https://doi.org/10.1080/00450618.2019.1629021

    Article  CAS  Google Scholar 

  23. Cai W, Wang G, Wu H et al (2022) Identifying traumatic brain injury (TBI) by ATR-FTIR spectroscopy in a mouse model. Spectrochim Acta A Mol Biomol Spectrosc 274:121099. https://doi.org/10.1016/j.saa.2022.121099

    Article  CAS  PubMed  Google Scholar 

  24. Baker MJ, Trevisan J, Bassan P et al (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9(8):1771–1791. https://doi.org/10.1038/nprot.2014.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morais CLM, Lima KMG, Singh M et al (2020) Tutorial: multivariate classification for vibrational spectroscopy in biological samples. Nat Protoc 15(7):2143–2162. https://doi.org/10.1038/s41596-020-0322-8

    Article  CAS  PubMed  Google Scholar 

  26. Biancolillo A, Marini F (2018) Chemometric methods for spectroscopy-based pharmaceutical analysis. Front Chem 6:576. https://doi.org/10.3389/fchem.2018.00576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang H, Wang L, Zhang H et al (2013) 1H NMR-based metabolic profiling of human rectal cancer tissue. Mol Cancer 12(1):121. https://doi.org/10.1186/1476-4598-12-121

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ami D, Mereghetti P, Foli A et al (2019) ATR-FTIR spectroscopy supported by multivariate analysis for the characterization of adipose tissue aspirates from patients affected by systemic amyloidosis. Anal Chem 91(4):2894–2900. https://doi.org/10.1021/acs.analchem.8b05008

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the key research and development plan in Shaanxi, Grant/Award Numbers 2020SF-204 and 2022JZ-53; the Key Innovative Project in Shaanxi, Grant/Award Number 2021ZDLSF02-02; and the National Natural Science Foundation of China, Grant/Award Number 81671476.

Author information

Authors and Affiliations

Authors

Contributions

Yuanming Wu and Mao Sun conceptualized the overall idea, message, and structure. Tangdong Chen and Lijuan Yuan wrote the bulk of the manuscript and created the figures. All authors contributed additional text specific to individual studies described in the manuscript. The authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lijuan Yuan or Yuanming Wu.

Ethics declarations

Ethics statement

Written informed consents were obtained from all participants. The mouse model was established under technical and facility support of local laws and institutional guidelines. All studies were approved by the ethics approval from the Air Force Medical University.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• An objective and rapid method for the identification of hypothermia death was presented.

• Brown adipose tissue was detected by ATR-FTIR for the first time.

• ATR-FTIR combined with chemometrics showed potential roles for forensic identification.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 998 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Sun, M., Li, B. et al. Identifying hypothermia death in a mouse model by ATR-FTIR. Int J Legal Med 138, 1179–1186 (2024). https://doi.org/10.1007/s00414-023-03156-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-023-03156-1

Keywords

Navigation