Skip to main content

Advertisement

Log in

Age estimation in infant and prenatal individuals through the metric development of the pars petrosa and squamosal portion of the temporal bone

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

This study proposes an assessment of the accuracy of the Fazekas and Kósa and Nagaoka methods by measuring the squamosal and petrous portions of the temporal bone, whose application in the Mediterranean population is not recommended. Therefore, our proposal is a new formula to estimate the age of skeletal remains from individuals at 5 months gestational age to 1.5 postnatal years with the temporal bone. The proposed equation was calculated on a Mediterranean sample identified from the cemetery of San José, Granada (n = 109). The mathematical model used is the exponential regression of the estimated age for each measure and sex, and both in combination, using an inverse calibration and cross-validation model. In addition, the estimation errors and the percentage of individuals within a 95% confidence interval were calculated. The lateral development of the skull, especially the growth of the length of the petrous portion, showed the greatest accuracy, while its counterpart, the width of the pars petrosa, showed the lowest accuracy, so its use is discouraged. The positive results from this paper should be useful in both forensic and bioarchaeological contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Irurita J, Alemán I, López-Lázaro S et al (2014) Chronology of the development of the deciduous dentition in Mediterranean population. Forensic Sci Int 240:95–103

    Article  PubMed  Google Scholar 

  2. Ubelaker DH (1987) Estimating age at death from immature human skeletons: an overview. J Forensic Sci 32:1254–1263

    Article  CAS  PubMed  Google Scholar 

  3. Cunningham C, Scheuer L, Black S (2016) Chapter 2 - Skeletal development and ageing. In: Developmental juvenile osteology, 2nd edn. Academic Press, San Diego, pp 5–18

  4. AlQahtani SJ, Hector MP, Liversidge HM (2010) Brief communication: the London atlas of human tooth development and eruption. Am J Phys Anthropol 142:481–490. https://doi.org/10.1002/ajpa.21258

    Article  CAS  PubMed  Google Scholar 

  5. Cameriere R, Giuliodori A, Zampi M et al (2015) Age estimation in children and young adolescents for forensic purposes using fourth cervical vertebra (C4). Int J Legal Med 129:347–355. https://doi.org/10.1007/s00414-014-1112-z

    Article  CAS  PubMed  Google Scholar 

  6. Cardoso HFV, Abrantes J, Humphrey LT (2014) Age estimation of immature human skeletal remains from the diaphyseal length of the long bones in the postnatal period. Int J Legal Med 128:809–824. https://doi.org/10.1007/s00414-013-0925-5

    Article  PubMed  Google Scholar 

  7. Corron L, Marchal F, Condemi S, Adalian P (2018) A critical review of sub-adult age estimation in biological anthropology: do methods comply with published recommendations? Forensic Sci Int 288:328.e1–328.e9. https://doi.org/10.1016/j.forsciint.2018.05.012

    Article  PubMed  Google Scholar 

  8. Rissech C, López-Costas O, Turbón D (2013) Humeral development from neonatal period to skeletal maturity—application in age and sex assessment. Int J Legal Med 127:201–212. https://doi.org/10.1007/s00414-012-0713-7

    Article  PubMed  Google Scholar 

  9. Anson BJ, Bast TH, Richany SF (1955) LXXVI the fetal and early postnatal development of the tympanic ring and related structures in man. Ann Otol Rhinol Laryngol 64:802–823

    Article  CAS  PubMed  Google Scholar 

  10. Fazekas IG, Kósa F (1978) Forensic fetal osteology. Akadémiai Kiadó, Budapest

  11. García-Mancuso R, Inda AM, Salceda SA (2016) Age estimation by tympanic bone development in foetal and infant skeletons: age estimation by tympanic fusion and development. Int J Osteoarchaeol 26:544–548. https://doi.org/10.1002/oa.2428

    Article  Google Scholar 

  12. Humphrey LT, Scheuer L (2006) Age of closure of the foramen of Huschke: an osteological study. Int J Osteoarchaeol 16:47–60. https://doi.org/10.1002/oa.807

    Article  Google Scholar 

  13. Nagaoka T, Abe M, Shimatani K (2012) Estimation of mortality profiles from non-adult human skeletons in Edo-period Japan. AS 120:115–128. https://doi.org/10.1537/ase.1107312

    Article  Google Scholar 

  14. Nagaoka T, Kawakubo Y (2015) Using the petrous part of the temporal bone to estimate fetal age at death. Forensic Sci Int 248:188.e1–188.e7. https://doi.org/10.1016/j.forsciint.2015.01.009

    Article  PubMed  Google Scholar 

  15. Weaver DS (1979) Application of the likelihood ratio test to age estimation using the infant and child temporal bone. Am J Phys Anthropol 50:263–269. https://doi.org/10.1002/ajpa.1330500216

    Article  CAS  PubMed  Google Scholar 

  16. Simms DL, Neely JG (1989) Thickness of the lateral surface of the temporal bone in children. Ann Otol Rhinol Laryngol 98:726–731. https://doi.org/10.1177/000348948909800913

    Article  CAS  PubMed  Google Scholar 

  17. Katzenberg MA, Grauer AL (2018) Biological anthropology of the human skeleton, 3rd edn. Wiley, Hoboken

  18. Alemán I, Irurita J, Valencia AR et al (2012) Brief communication: the Granada osteological collection of identified infants and young children. Am J Phys Anthropol 149:606–610

    Article  PubMed  Google Scholar 

  19. Valsecchi A, Irurita Olivares J, Mesejo P (2019) Age estimation in forensic anthropology: methodological considerations about the validation studies of prediction models. Int J Legal Med 133:1915–1924. https://doi.org/10.1007/s00414-019-02064-7

    Article  PubMed  Google Scholar 

  20. Lin L (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics: 255–268

  21. Ferrante L, Cameriere R (2009) Statistical methods to assess the reliability of measurements in the procedures for forensic age estimation. Int J Legal Med 123:277–283. https://doi.org/10.1007/s00414-009-0349-4

    Article  CAS  PubMed  Google Scholar 

  22. McBride G (2005) A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. NIWA client report:HAM2005-062 45 45:307–310

    Google Scholar 

  23. Berger VW, Zhou Y (2014) Kolmogorov–Smirnov test: overview. In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels JL (eds) Wiley StatsRef: Statistics Reference Online. Wiley Online Library. https://doi.org/10.1002/9781118445112.stat06558

  24. Chan Y (2003) Biostatistics 104: correlational analysis. Singapore Med J 44:614–619

    CAS  PubMed  Google Scholar 

  25. Figueiro G, Irurita Olivares J, Alemán Aguilera I (2022) Age estimation in infant skeletal remains by measurements of the pars lateralis. Int J Legal Med 136:1675–1684. https://doi.org/10.1007/s00414-022-02867-1

    Article  PubMed  Google Scholar 

  26. Irurita Olivares J, Alemán Aguilera I (2017) Proposal of new regression formulae for the estimation of age in infant skeletal remains from the metric study of the pars basilaris. Int J Legal Med 131:781–788. https://doi.org/10.1007/s00414-016-1478-1

    Article  PubMed  Google Scholar 

  27. Pérez CP, Olivares JI, Aguilera IA (2017) Validation methods of Fazekas and Kósa and Molleson and Cox for age estimation of the ilium in Western Mediterranean non-adult population: proposal of new regression formulas. Int J Legal Med 131:789–795. https://doi.org/10.1007/s00414-016-1475-4

    Article  PubMed  Google Scholar 

  28. Irurita Olivares J, Alemán Aguilera I, Viciano Badal J et al (2014) Evaluation of the maximum length of deciduous teeth for estimation of the age of infants and young children: proposal of new regression formulas. Int J Legal Med 128:345–352

    Article  PubMed  Google Scholar 

  29. Lucy D, Aykroyd R, Pollard A (2002) Nonparametric calibration for age estimation. J R Stat Soc Ser C Appl Stat 51:183–196

    Article  Google Scholar 

  30. Rousseeuw PJ, Leroy AM (2005) Robust regression and outlier detection, vol 589. John Wiley & Sons, Hoboken. https://doi.org/10.1002/0471725382

  31. Lucy D (2005) Introduction to statistics for forensic scientists. John Wiley & Sons, Ltd., Chichester, pp 75–94

  32. Witten IH, Frank E, Hall MA (2005) Data mining. Practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann, pp 403–584

  33. Lewis ME, Flavel A (2006) Age assessment of child skeletal remains in forensic contexts. In: Schmitt A, Cunha E, Pinheiro J (eds) Forensic Anthropology and Medicine. Humana Press, Totowa, NJ, pp 243–257

    Chapter  Google Scholar 

  34. Lewis ME, Rutty GN (2003) The endangered child: the personal identification of children in forensic anthropology. Sci Justice 43:201–209. https://doi.org/10.1016/S1355-0306(03)71777-8

    Article  CAS  PubMed  Google Scholar 

  35. Tanner JM, Whitehouse R, Takaishi M (1966) Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965 II. Arch Dis Child 41:613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Irurita Olivares J, Alemán Aguilera I (2016) Validation of the sex estimation method elaborated by Schutkowski in the Granada Osteological Collection of identified infant and young children: Analysis of the controversy between the different ways of analyzing and interpreting the results. Int J Legal Med 130:1623–1632

    Article  PubMed  Google Scholar 

  37. Luna LH, Aranda CM, Monge Calleja ÁM, Santos AL (2021) Test of the auricular surface sex estimation method in fetuses and non-adults under 5 years old from the Lisbon and Granada Reference Collections. Int J Legal Med 135:993–1003. https://doi.org/10.1007/s00414-020-02431-9

    Article  PubMed  Google Scholar 

  38. Smith DEM, Humphrey LT, Cardoso HFV (2021) Age estimation of immature human skeletal remains from mandibular and cranial bone dimensions in the postnatal period. Forensic Sci Int 327:110943. https://doi.org/10.1016/j.forsciint.2021.110943

    Article  CAS  PubMed  Google Scholar 

  39. Rissech C, Black S (2007) Scapular development from the neonatal period to skeletal maturity: a preliminary study. Int J Osteoarchaeol 17:451–464. https://doi.org/10.1002/oa.890

    Article  Google Scholar 

  40. López-Costas O, Rissech C, Trancho G, Turbón D (2012) Postnatal ontogenesis of the tibia. Implications for age and sex estimation. Forensic Sci Int 214:207–2e1

    Article  Google Scholar 

  41. De Luca S, Pacifici A, Pacifici L et al (2016) Third molar development by measurements of open apices in an Italian sample of living subjects. J Forensic Leg Med 38:36–42. https://doi.org/10.1016/j.jflm.2015.11.007

    Article  PubMed  Google Scholar 

  42. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Ijcai. Montreal, Canada, pp 1137–1145

    Google Scholar 

  43. Cardoso HFV, Gomes J, Campanacho V, Marinho L (2013) Age estimation of immature human skeletal remains using the post-natal development of the occipital bone. Int J Legal Med 127:997–1004. https://doi.org/10.1007/s00414-013-0818-7

    Article  CAS  PubMed  Google Scholar 

  44. Carneiro C, Curate F, Cunha E (2016) A method for estimating gestational age of fetal remains based on long bone lengths. Int J Legal Med 130:1333–1341. https://doi.org/10.1007/s00414-016-1393-5

    Article  PubMed  Google Scholar 

  45. Carneiro C, Curate F, Alemán I et al (2019) Fetal age at death estimation on dry bone: testing the applicability of equations developed on a radiographic sample. RevArgAntropBiol 21:008. https://doi.org/10.24215/18536387e008

    Article  Google Scholar 

  46. Cardoso HF, Spake L, Humphrey LT (2017) Age estimation of immature human skeletal remains from the dimensions of the girdle bones in the postnatal period. Am J Phys Anthropol 163:772–783

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Emucesa, the San José Cemetery Company of Granada, for allowing us access to study material, also to the Laboratory of Physical Anthropology of the University of Granada, and the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik A. Borja Miranda.

Ethics declarations

Ethics approval

Not applicable.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

INFO: The main author is under 35; as indicated in the “Supporting Junior Scientists” section, I communicated this to the editors’ council.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borja Miranda, E.A., Partido Navadijo, M., Alemán Aguilera, I. et al. Age estimation in infant and prenatal individuals through the metric development of the pars petrosa and squamosal portion of the temporal bone. Int J Legal Med 137, 1505–1514 (2023). https://doi.org/10.1007/s00414-023-03030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-023-03030-0

Keywords

Navigation