Skip to main content

Advertisement

Log in

Sex estimation from the greater sciatic notch: a comparison of classical statistical models and machine learning algorithms

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The greater sciatic notch (GSN) is a useful element for sex estimation because it is quite resistant to damage, and thus it can often be assessed even in poorly preserved skeletons. This study aimed to develop statistical models for sex estimation based on visual and metric analyses of the GSN, and additional variables linked to the GSN. A total of 60 left coxal bones (30 males and 30 females) were analysed. Fifteen variables were measured, and one was a morphologic variable. These 16 variables were used for the comparison of six statistical models: linear discriminant analysis (LDA), regularized discriminant analysis (RDA), penalized logistic regression (PLR) and flexible discriminant analysis (FDA), and two machine learning algorithms, support vector machine (SVM) and artificial neural network (ANN). The statistical models were built in two steps: firstly, only with the GSN variables (group 1), and secondly, with the whole variables (group 2), in order to see if the models including all the variables performed better. The overall accuracy of the models was very close, ranging from 0.92 to 0.97 using specific GSN variables. When additional variables starting from the deepest point of GSN are available, it is worth to use them, because the accuracy increases. PLR (after optimization of parameters) stands out from other statistical models. The position of the deepest point of GSN (Fig. 2) probably plays a crucial role for the sexual dimorphism, as stated by the good performance of the visual assessment of this point and the fact that the A2 angle (posterior angle with the deepest point of the GSN as the apex) is included in all models.

Highlights

  • Morphologic and metric evaluation of the greater sciatic notch from a contemporary French sample.

  • Comparison of six non-classical statistical models.

  • Plain morphologic assessment allows for nearly 92% of correct classification.

  • Accuracy ranges between 0.92 and 0.97 and 0.93 and 0.99 for targeted variables and all variables (targeted and non-targeted), respectively.

  • PLR with an optimization process gives the best accuracy with targeted variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Ubelaker DH (1989) Human skeletal remains: excavation, analysis, interpretation (Manuals on archeology), 2nd edn. Taraxacum, Washington

    Google Scholar 

  2. Reichs KJ (1998), Postmortem dismemberment: recovery, analysis and interpretation. In: Reichs KJ, Forensic Osteology, 2nd edn. Charles C. Thomas Pub, Springfield 353-388

  3. Moraitis K, Eliopoulos C, Spilioupoulou C (2013) Fracture characteristics of perimortem trauma in skeletal material. Internet j biol Anthropol 3(2):1–8

    Google Scholar 

  4. Sauer NJ (1998) The timing of injuries and manner of death: distinguishing among antemortem, perimortem and post-mortem trauma. In: Reichs KJ, Forensic Osteology, 2nd edn. Charles C. Thomas Pub, Springfield 321–332

  5. Quatrehomme G (2015) Traité d’Anthropologie médico-légale. De Boeck Supérieur, Louvain-la-Neuve (Belgique)

  6. Scheuer L (2002) Application of osteology to forensic medicine. Clin Anat 15(4):297–312

    Article  PubMed  Google Scholar 

  7. Đurić M, Rakočević Z, Đonić D (2005) The reliability of sex determination of skeletons from forensic context in the Balkans. Forensic Sci Int 147(2–3):159–164

    Article  PubMed  Google Scholar 

  8. Spradley MK, Jantz RL (2011) Sex estimation in forensic anthropology: skull versus postcranial elements. J Forensic Sci 56(2):289–296

    Article  PubMed  Google Scholar 

  9. Ferembach D, Schwidetzky I, Stloukal M (1979) Recommandations pour déterminer l’âge et le sexe sur le squelette. Bull Mem Soc Anthropol Paris 6(1):7–45

    Article  Google Scholar 

  10. Colman KL, van der Merwe AE, Stull EK, Dobbe JGG, Streekstra GJ, van Rijn RR, Oostra RJ, Boer HH (2019) The accuracy of 3D virtual bone models of the pelvis for morphological sex estimation. Int J Legal Med 133(6):1853–1860

    Article  PubMed  PubMed Central  Google Scholar 

  11. Walker PL (2005) Greater sciatic notch morphology: sex, age, and population differences. Am J Phys Anthropol 127(4):385–391

    Article  PubMed  Google Scholar 

  12. Clavero A, Salicrú M, Turbón D (2015) Sex prediction from the femur and hip bone using a sample of CT images from a Spanish population. Int J Legal Med 129(2):373–383

    Article  PubMed  Google Scholar 

  13. Krishan K, Chatterjee PM, Kanchan T, Kaur S, Baryah N, Singh RK (2016) A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework. Forensic Sci Int 261:165.e1-165.e8

    Article  Google Scholar 

  14. Franklin D, Cardini A, Flavel A, Marks MK (2014) Morphometric analysis of pelvic sexual dimorphism in a contemporary Western Australian population. Int J Legal Med 28(5):861–872

    Article  Google Scholar 

  15. Bytheway JA, Ross AH (2010) a geometric morphometric approach to sex determination of the human adult os coxa. J Forensic Sci 55(4):859–864

    Article  PubMed  Google Scholar 

  16. Blake KAS, Hartnett-McCann K (2018) Metric assessment of the pubic bone using known and novel data points for sex estimation. J Forensic Sci 63(5):1472–1478

    Article  PubMed  Google Scholar 

  17. Coelho J, Curate F (2019) CADOES: an interactive machine-learning approach for sex estimation with the pelvis. Forensic Sci Int 302:109873. https://doi.org/10.1016/j.forsciint.2019.109873

    Article  Google Scholar 

  18. Steyn M, Işcan MY (2008) Metric sex determination from the pelvis in modern Greeks. Forensic Sci Int 179(1):86.e1–6

    Article  CAS  Google Scholar 

  19. Robertson HI, Pokotylo DL, Weston DA (2019) Testing landmark redundancy for sex-based shape analysis of the adult human os coxa. Am J Phys Anthropol 169:689–703

    PubMed  Google Scholar 

  20. Brůžek J, Santos F, Dutailly B, Murail P, Cunha E (2017) Validation and reliability of the sex estimation of the human os coxae using freely available DSP2 software for bioarchaeology and forensic anthropology. Am J of Phys Anthropol 64(2):440–449

    Article  Google Scholar 

  21. Krogman WM, Iscan MY (1986) The human skeleton in forensic medicine, Charles C. Thomas, Springfield

  22. Brůžek J (2002) A method for visual determination of sex, using the human hip bone. Am J Phys Anthropol 117(2):157–168

    Article  PubMed  Google Scholar 

  23. Phenice TW (1969) A newly developed visual method of sexing the os pubis. Am J of Phys Anthropol 30(2):297–301

    Article  CAS  Google Scholar 

  24. Vacca E, Di Vella G (2012) Metric characterization of the human coxal bone on a recent Italian sample and multivariate discriminant analysis to determine sex. Forensic Sci Int 222(1–3):401.e1-401.e9

    Google Scholar 

  25. Torimitsu S, Makino Y, Saitoh H, Sakuma A, Ishii N, Yajima D, Inokuchi G et al (2015) Morphometric analysis of sex differences in contemporary Japanese pelves using multidetector computed tomography. Forensic Sci Int 257:530.e1-530.e7

    Article  Google Scholar 

  26. Mahakkanukrauh P, Ruengdit S, Tun SM, Case DT, Sinthubua A (2017) Osteometric sex estimation from the os coxa in a Thai population. Forensic Sci Int 271:127.e1-127.e7

    Article  Google Scholar 

  27. Djorojevic M, Roldán C, García-Parra P, Alemán I, Botella M (2014) Morphometric sex estimation from 3D computed tomography os coxae model and its validation in skeletal remains. Int J Legal Med 128(5):879–888

    Article  PubMed  Google Scholar 

  28. Murail P, Brůžek J, Houët F, Cunha E (2005) DSP: a tool for probabilistic sex diagnosis using worlwide variability in hip bone measurements. Bull mem Soc Anthropol Paris 17(3–4):167–176

    Article  Google Scholar 

  29. Quatrehomme G, Radoman I, Nogueira L, du Jardin P, Alunni V (2017) Sex determination using the DSP (probabilistic sex diagnosis) method on the coxal bone: efficiency of method according to number of available variables. Forensic Sci Int 272:190–193

    Article  PubMed  Google Scholar 

  30. Kalsey G, Singla RK, Sachdeva K (2011) Role of the greater sciatic notch of the hip bone in the sexual dimorphism: a morphometric study of the North Indian population. Med Sci Law 51(2):81–86

    Article  Google Scholar 

  31. Bonczarowska JH, Bonicelli A, Papadomanolakis A, Kranioti EF (2019) The posterior portion of the ilium as a sex indicator: a validation study. Forensic Sci Int 294:216.e1-216.e6

    Article  Google Scholar 

  32. Gómez-Valdés JA, Quinto-Sánchez M, Garmendia AM, Veleminska J, Sánchez-Mejorada G, Bruzek J (2012) Comparison of methods to determine sex by evaluating the greater sciatic notch: visual, angular and geometric morphometrics. Forensic Sci Int 221(1–3):156.e1-156.e7

    Google Scholar 

  33. Jovanović S, Zivanović S (1965) The establishment of the sex by the greater sciatic notch. Acta Anat 61(1):101–107

    Article  PubMed  Google Scholar 

  34. Singh S, Potturi BR (1978) Greater sciatic notch in sex determination. J Anat 125(Pt3):619–624

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Alizadeh Z, Hosseini A, Abkenari SA, Jabbari M (2013) Radiographic examination of the greater sciatic notch in determining the sex among Iranian people. Med Sci Law 53(2):85–89

    Article  CAS  PubMed  Google Scholar 

  36. Kim DH, Lee SH, Lee SS, Kim YS, Park SK, Han SH, Lee UY (2018) Comprehensive evaluation of the greater sciatic notch for sexual estimation through three-dimensional metric analysis using computed tomography based models. Legal Med 35:1–8

    Article  PubMed  Google Scholar 

  37. Takahashi H (2006) Curvature of the greater sciatic notch in sexing the human pelvis. Anthropol Sci 114(3):187–91

    Article  Google Scholar 

  38. Velemínská J, Krajíček V, Dupej J, Goméz-Valdés JA, Velemínský P, Šefčáková A, Pelikán J, Sánchez-Mejorada G, Brůžek J (2013) Technical note: geometric morphometrics and sexual dimorphism of the greater sciatic notch in adults from two skeletal collections: the accuracy and reliability of sex classification: sexual dimorphism of the greater sciatic notch. Am J Phys Anthropol 152(4):558–65

    Article  PubMed  Google Scholar 

  39. Cohen J (1960) A coefficient of agreement for nominal class. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  40. Haeb-Umbach R, Ney H (1992) Linear discriminant analysis for improved large vocabulary continuous speech recognition. In [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1–16 vol.1. San Francisco, CA, USA: IEEE.

  41. Santos F, Guyomarc’h P, Bruzek J, (2014) Statistical sex determination from craniometrics: comparison of linear discriminant analysis, logistic regression, and support vector machines. Forensic Sci Int 245:204.e1-204.e8

    Article  Google Scholar 

  42. Nikita E, Nikitas P (2020) On the use of machine learning algorithms in forensic anthropology. Legal Med. https://doi.org/10.1016/j.legalmed.2020.101771

    Article  PubMed  Google Scholar 

  43. Stull KE, L’Abbé EN, Ousley SD (2017) Subadult sex estimation from diaphyseal dimensions. Am J Phys Anthrol 163(1):64–74

    Article  Google Scholar 

  44. Hinić-Frlog S, Motani R (2010) Relationship between osteology and aquatic locomotion in birds: determining modes of locomotion in extinct ornithurae. J Evol Biol 23(2):372–385

    Article  PubMed  Google Scholar 

  45. Paliwal M, Kumar UA (2009) Neural networks and statistical technics: a review of application. Expert Syst Appl 36:2–17

    Article  Google Scholar 

  46. Haykin S (2009) Neural networks and learning machines, 3rd edn. Prentice Hall, London

    Google Scholar 

  47. Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  48. Du Jardin Ph, Ponsaillé J, Alunni-Perret V, Quatrehomme G (2009) A comparison between neural network and other metric methods to determine sex from the upper femur in a modern French population. Forensic Sci Int 192:127.e1-127.e6

    Article  Google Scholar 

  49. James J, Witten D, Hastie T, Tibshirani R (2014) An introduction to statistical learning with applications in R. Springer, New York

    Google Scholar 

  50. Maroco J, Silva D, Guerreiro M, Santana I, de Mendonça A (2011) Data mining methods in the prediction of dementia: a real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forest. BMC res Notes 4:299

    Article  PubMed  PubMed Central  Google Scholar 

  51. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

    Article  CAS  PubMed  Google Scholar 

  52. Kurki H (2011) Pelvic dimorphism in relation to body size and body size dimorphism in humans. J Hum Evol 61(6):631–643

    Article  PubMed  Google Scholar 

  53. Yoldi A, Aleman I, Botella MC (2001) Funciones discriminantes del sexo a partir del ilion en una poblacion mediterranea de sexo conocido. Rev Esp Antrop Biol 22:23–38

    Google Scholar 

  54. Kranioti EF, Šťovíčková L, Karell MA, Brůžek J (2019) Sex estimation of os coxae using DSP2 software: a validation study of a Greek sample. Forensic Sci Int 297:371.e1-371.e6

    Article  CAS  Google Scholar 

  55. Machado MPS, Costa ST, Freire AR, Navega D, Cunha E, Júnior ED, Prado FB, Rossi AC (2018) Application and validation of diagnose sexuelle probabiliste V2 tool in a miscegenated population. Forensic Sci Int 290:351.e1-351.e5

    Article  Google Scholar 

  56. Feldesman MR (2002) Classification tree as an alternative to linear discriminant analysis. Am J Phys Anthropol 119(3):257–275

    Article  PubMed  Google Scholar 

  57. Reynès C, Sabatier R, Molinari N (2006) Choice of B-splines with free parameters in the flexible discriminant analysis context. Comput Stat Data Anal 51(3):1765–1778

    Article  Google Scholar 

  58. Edwards C (2015) Growing pains for deep learning. Commun ACM 58:14–16. https://doi.org/10.1145/2771283

    Article  Google Scholar 

  59. Olivier G (1960) Pratique anthropologique. Vigot Frère éditeurs, Paris

    Google Scholar 

Download references

Acknowledgements

We wish to thank Marie-Catherine Francino for proofreading this article.

Author information

Authors and Affiliations

Authors

Contributions

Siam Knecht: conceptualization, methodology, investigation, writing, and editing.

Luisa Nogueira: conceptualization, methodology, investigation, writing, and editing.

Maël Servant: reviewing and editing.

Fréderic Santos: methodology, reviewing, and editing.

Véronique Alunni: reviewing and editing.

Caroline Bernardi: reviewing and editing.

Gérald Quatrehomme: conceptualization, methodology, writing, reviewing, and editing.

Corresponding author

Correspondence to Siam Knecht.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knecht, S., Nogueira, L., Servant, M. et al. Sex estimation from the greater sciatic notch: a comparison of classical statistical models and machine learning algorithms. Int J Legal Med 135, 2603–2613 (2021). https://doi.org/10.1007/s00414-021-02700-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02700-1

Keywords

Navigation