Skip to main content
Log in

Forensic sex estimation using the vertebrae: an evaluation on two European populations

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Sex estimation is one of the primary steps for constructing the biological profile of skeletal remains leading to their identification in the forensic context. While the pelvis is the most sex diagnostic bone, the cranium and other post-cranial elements have been extensively studied. Earlier research has also focused on the vertebral column with varying results regarding its sex classification accuracy as well as the underlying population specificity. The present study focuses on three easily identifiable vertebrae, namely T1, T12, and L1, and utilizes two modern European populations, a Greek and a Danish, to evaluate their forensic utility in sex identification. To this end, 865 vertebrae from 339 individuals have been analyzed for sexual dimorphism by further evaluating the effects of age-at-death and population affinity on its expression. Our results show that T1 is the best sex diagnostic vertebra for both populations reaching cross-validated accuracy of almost 90%, while age-at-death has limited effect on its sexual dimorphism. On the contrary, T12 and L1 produced varying results ranging from 75 to 83% accuracy with the Greek population exhibiting distinctively more pronounced sexual dimorphism. Additionally, age-at-death had significant effect on sexual dimorphism of T12 and L1 and especially in the Greek female and Danish male groups. Our results on inter-population comparison suggest that vertebral sex discriminant functions, and especially those utilizing multiple measurements, are highly population specific and optimally suitable only for their targeted population. An open-source software tool to facilitate classifying new cases based on our results is made freely available to forensic researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Please contact the author for data requests. Sex estimation software is freely available under GPLv3 (see manuscript for further details).

References

  1. Sládek V, Macháček J, Ruff CB, Schuplerová E, Přichystalová R, Hora M (2015) Population-specific stature estimation from long bones in the early medieval Pohansko (Czech Republic). Am J Phys Anthropol 158:312–324. https://doi.org/10.1002/ajpa.22787

    Article  PubMed  Google Scholar 

  2. Ruff C, Niskanen M, Junno J-A, Jamison P (2005) Body mass prediction from stature and bi-iliac breadth in two high latitude populations, with application to earlier higher latitude humans. J Hum Evol 48:381–392. https://doi.org/10.1016/j.jhevol.2004.11.009

    Article  PubMed  Google Scholar 

  3. Brůžek J, Santos F, Dutailly B, Murail P, Cunha E (2017) Validation and reliability of the sex estimation of the human os coxae using freely available DSP2 software for bioarchaeology and forensic anthropology. Am J Phys Anthropol 164:440–449. https://doi.org/10.1002/ajpa.23282

    Article  PubMed  Google Scholar 

  4. Brzobohatá H, Krajíček V, Horák Z, Velemínská J (2016) Sexual dimorphism of the human tibia through time: insights into shape variation using a surface-sased approach. PLoS One 11:e0166461. https://doi.org/10.1371/journal.pone.0166461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carvallo D, Retamal R (2020) Sex estimation using the proximal end of the femur on a modern Chilean sample. Forensic Sci Int Rep 2:100077. https://doi.org/10.1016/j.fsir.2020.100077

    Article  Google Scholar 

  6. Casado AM (2017) Quantifying sexual dimorphism in the human cranium: a preliminary analysis of a novel method. J Forensic Sci 62:1259–1265. https://doi.org/10.1111/1556-4029.13441

    Article  PubMed  Google Scholar 

  7. Duangto P, Mahakkanukrauh P (2020) Sex estimation from upper limb bones in a Thai population. Anat Cell Biol 53:36–43. https://doi.org/10.5115/acb.19.179

    Article  PubMed  PubMed Central  Google Scholar 

  8. Etli Y, Asirdizer M, Hekimoglu Y, Keskin S, Yavuz A (2019) Sex estimation from sacrum and coccyx with discriminant analyses and neural networks in an equally distributed population by age and sex. Forensic Sci Int 303:109955. https://doi.org/10.1016/j.forsciint.2019.109955

    Article  CAS  PubMed  Google Scholar 

  9. Franklin D, Cardini A, Flavel A, Kuliukas A (2013) Estimation of sex from cranial measurements in a Western Australian population. Forensic Sci Int 229:158.e1–158.e8. https://doi.org/10.1016/j.forsciint.2013.03.005

    Article  Google Scholar 

  10. Khanpetch P, Prasitwattanseree S, Case DT, Mahakkanukrauh P (2012) Determination of sex from the metacarpals in a Thai population. Forensic Sci Int 217:229.e1–229.e8. https://doi.org/10.1016/j.forsciint.2011.10.044

    Article  Google Scholar 

  11. Phenice TW (1969) A newly developed visual method of sexing the os pubis. Am J Phys Anthropol 30:297–301. https://doi.org/10.1002/ajpa.1330300214

    Article  CAS  PubMed  Google Scholar 

  12. Spradley MK, Jantz RL (2011) Sex estimation in forensic anthropology: skull versus postcranial elements. J Forensic Sci 56:289–296. https://doi.org/10.1111/j.1556-4029.2010.01635.x

    Article  PubMed  Google Scholar 

  13. Bruzek J, Murail P (2006) Methodology and reliability of sex determination from the skeleton. In: Schmitt A, Cunha E, Pinheiro J (eds) Forensic anthropology and medicine. Humana Press, Totowa, pp 225–242

    Google Scholar 

  14. Abdel Fatah EE, Shirley NR, Jantz RL, Mahfouz MR (2014) Improving sex estimation from crania using a novel three-dimensional quantitative method. J Forensic Sci 59:590–600. https://doi.org/10.1111/1556-4029.12379

    Article  PubMed  Google Scholar 

  15. Bertsatos A, Papageorgopoulou C, Valakos E, Chovalopoulou M-E (2018) Investigating the sex-related geometric variation of the human cranium. Int J Legal Med 132:1505–1514. https://doi.org/10.1007/s00414-018-1790-z

    Article  PubMed  Google Scholar 

  16. Krüger GC, L’Abbé EN, Stull KE, Kenyhercz MW (2015) Sexual dimorphism in cranial morphology among modern South Africans. Int J Legal Med 129:869–875. https://doi.org/10.1007/s00414-014-1111-0

    Article  PubMed  Google Scholar 

  17. Albanese J (2013) A method for estimating sex using the clavicle, humerus, radius, and ulna. J Forensic Sci 58:1413–1419. https://doi.org/10.1111/1556-4029.12188

    Article  PubMed  Google Scholar 

  18. Holman DJ, Bennett KA (1991) Determination of sex from arm bone measurements. Am J Phys Anthropol 84:421–426. https://doi.org/10.1002/ajpa.1330840406

    Article  CAS  PubMed  Google Scholar 

  19. Krüger GC, L’Abbé EN, Stull KE (2017) Sex estimation from the long bones of modern South Africans. Int J Legal Med 131:275–285. https://doi.org/10.1007/s00414-016-1488-z

    Article  PubMed  Google Scholar 

  20. Badr El Dine FMM, El Shafei MM (2015) Sex determination using anthropometric measurements from multi-slice computed tomography of the 12th thoracic and the first lumbar vertebrae among adult Egyptians. Egypt J Forensic Sci 5:82–89. https://doi.org/10.1016/j.ejfs.2014.07.005

    Article  Google Scholar 

  21. Bethard JD, Seet BL (2013) Sex determination from the second cervical vertebra: a test of Wescott’s method on a modern American sample. J Forensic Sci 58:101–103. https://doi.org/10.1111/j.1556-4029.2012.02183.x

    Article  PubMed  Google Scholar 

  22. Liguoro D, Vandermeersch B, Guérin J (1994) Dimensions of cervical vertebral bodies according to age and sex. Surg Radiol Anat 16:149–155. https://doi.org/10.1007/BF01627588

    Article  CAS  PubMed  Google Scholar 

  23. MacLaughlin SM, Oldale KNM (1992) Vertebral body diameters and sex prediction. Ann Hum Biol 19:285–292. https://doi.org/10.1080/03014469200002152

    Article  CAS  PubMed  Google Scholar 

  24. Marino EA (1995) Sex estimation using the first cervical vertebra. Am J Phys Anthropol 97:127–133. https://doi.org/10.1002/ajpa.1330970205

    Article  CAS  PubMed  Google Scholar 

  25. Wescott DJ (2000) Sex variation in the second cervical vertebra. J Forensic Sci 45:14707J. https://doi.org/10.1520/JFS14707J

    Article  Google Scholar 

  26. Decker SJ, Foley R, Hazelton JM, Ford JM (2019) 3D analysis of computed tomography (CT)–derived lumbar spine models for the estimation of sex. Int J Legal Med 133:1497–1506. https://doi.org/10.1007/s00414-019-02001-8

    Article  PubMed  Google Scholar 

  27. Amores A, Botella MC, Alemán I (2014) Sexual dimorphism in the 7th cervical and 12th thoracic vertebrae from a Mediterranean population. J Forensic Sci 59:301–305. https://doi.org/10.1111/1556-4029.12320

    Article  PubMed  Google Scholar 

  28. Hou WB, Cheng KL, Tian SY, Lu YQ, Han YY, Lai Y, Li YQ (2012) Metric method for sex determination based on the 12th thoracic vertebra in contemporary north-easterners in China. J Forensic Legal Med 19:137–143. https://doi.org/10.1016/j.jflm.2011.12.012

    Article  Google Scholar 

  29. Yu S-B, Lee U-Y, Kwak D-S, Ahn YW, Jin CZ, Zhao J, Sui HJ, Han SH (2008) Determination of sex for the 12th thoracic vertebra by morphometry of three-dimensional reconstructed vertebral models. J Forensic Sci 53:620–625. https://doi.org/10.1111/j.1556-4029.2008.00701.x

    Article  PubMed  Google Scholar 

  30. Zheng WX, Cheng FB, Cheng KL et al (2012) Sex assessment using measurements of the first lumbar vertebra. Forensic Sci Int 219:285.e1–285.e5. https://doi.org/10.1016/j.forsciint.2011.11.022

    Article  Google Scholar 

  31. Allbright AS (2007) Sexual dimorphism in the vertebral column. Dissertation, University of Tennessee

  32. Gambaro L (2013) Sexual dimorphism of the thoracic vertebrae in a modern Cretan population. Dissertation, Bournemouth University

  33. Bastir M, Higuero A, Ríos L, García Martínez D (2014) Three-dimensional analysis of sexual dimorphism in human thoracic vertebrae: implications for the respiratory system and spine morphology. Am J Phys Anthropol 155:513–521. https://doi.org/10.1002/ajpa.22604

    Article  PubMed  Google Scholar 

  34. Bellemare F, Jeanneret A, Couture J (2003) Sex differences in thoracic dimensions and configuration. Am J Respir Crit Care Med 168:305–312. https://doi.org/10.1164/rccm.200208-876OC

    Article  PubMed  Google Scholar 

  35. Hora M, Sládek V (2018) Population specificity of sex estimation from vertebrae. Forensic Sci Int 291:279.e1–279.e12. https://doi.org/10.1016/j.forsciint.2018.08.015

    Article  Google Scholar 

  36. Eliopoulos C, Lagia A, Manolis S (2007) A modern, documented human skeletal collection from Greece. HOMO 58:221–228. https://doi.org/10.1016/j.jchb.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  37. Ramadan N, Abd El Salam M, Hanon A, et al (2017) Age and sex identification using multi-slice computed tomography of the last thoracic vertebrae of an Egyptian sample J Forensic Res 08: https://doi.org/10.4172/2157-7145.1000386

  38. Perini TA, Oliveira GL, Ornellas JS, Oliveira FP (2005) Technical error of measurement in anthropometry (English version). Rev Bras Med Esporte 11:86–90

    Google Scholar 

  39. Okada K (2017) Negative estimate of variance-accounted-for effect size: how often it is obtained, and what happens if it is treated as zero. Behav Res Methods 49:979–987. https://doi.org/10.3758/s13428-016-0760-y

    Article  PubMed  Google Scholar 

  40. Eaton JW, Bateman D, Hauberg S, Wehbring R (2019) GNU Octave version 5.1.0 manual: a high-level interactive language for numerical computations

  41. Colman KL, Dobbe JGG, Stull KE, Ruijter JM, Oostra RJ, van Rijn RR, van der Merwe AE, de Boer HH, Streekstra GJ (2017) The geometrical precision of virtual bone models derived from clinical computed tomography data for forensic anthropology. Int J Legal Med 131:1155–1163. https://doi.org/10.1007/s00414-017-1548-z

    Article  PubMed  PubMed Central  Google Scholar 

  42. Stull KE, Tise ML, Ali Z, Fowler DR (2014) Accuracy and reliability of measurements obtained from computed tomography 3D volume rendered images. Forensic Sci Int 238:133–140. https://doi.org/10.1016/j.forsciint.2014.03.005

    Article  PubMed  Google Scholar 

  43. Weinberg SM, Scott NM, Neiswanger K, Brandon CA, Marazita ML (2004) Digital three-dimensional photogrammetry: evaluation of anthropometric precision and accuracy using a Genex 3D camera system. Cleft Palate Craniofac J 41:507–518. https://doi.org/10.1597/03-066.1

    Article  PubMed  Google Scholar 

  44. Zhang Q, Paz AR, Banner J, Schjellerup Jørkov ML, Villa C (2019) Stature estimation from postmortem CT femoral maximum length in contemporary Danish population. J Forensic Sci 65(3):930–938. https://doi.org/10.1111/1556-4029.14254

    Article  PubMed  Google Scholar 

  45. Paz AR, Banner J, Villa C (2019) Validity of the probabilistic sex diagnosis method (DSP) on 3D CT-scans from modern Danish population. Rev Médecine Légale 10:43–49. https://doi.org/10.1016/j.medleg.2018.08.002

    Article  Google Scholar 

  46. Villa C, Buckberry J, Lynnerup N (2019) Evaluating osteological ageing from digital data. J Anat 235:386–395. https://doi.org/10.1111/joa.12544

    Article  PubMed  Google Scholar 

  47. Bertsatos A, Gkaniatsou E, Papageorgopoulou C, Chovalopoulou M-E (2019) “What and how should we share?” An inter-method inter-observer comparison of measurement error with landmark-based craniometric datasets. Anthropol Anz 77:109–120. https://doi.org/10.1127/anthranz/2019/1047

    Article  Google Scholar 

  48. Fruciano C, Celik MA, Butler K, Dooley T, Weisbecker V, Phillips MJ (2017) Sharing is caring? Measurement error and the issues arising from combining 3D morphometric datasets. Ecol Evol 7:7034–7046. https://doi.org/10.1002/ece3.3256

    Article  PubMed  PubMed Central  Google Scholar 

  49. Toneva D, Nikolova S, Georgiev I (2016) Reliability and accuracy of angular measurements on laser scanning created 3D models of dry skulls. J Anthropol 2016:1–6. https://doi.org/10.1155/2016/6218659

    Article  Google Scholar 

  50. Colman KL, de Boer HH, Dobbe JGG, Liberton NPTJ, Stull KE, van Eijnatten M, Streekstra GJ, Oostra RJ, van Rijn RR, van der Merwe AE (2019) Virtual forensic anthropology: the accuracy of osteometric analysis of 3D bone models derived from clinical computed tomography (CT) scans. Forensic Sci Int 304:109963. https://doi.org/10.1016/j.forsciint.2019.109963

    Article  PubMed  Google Scholar 

  51. Cramer GD (2014) The thoracic region. In: Clinical anatomy of the spine, spinal cord, and ANS. Elsevier, pp. 210–245

  52. Masharawi Y, Salame K (2011) Shape variation of the neural arch in the thoracic and lumbar spine: characterization and relationship with the vertebral body shape. Clin Anat 24:858–867. https://doi.org/10.1002/ca.21175

    Article  CAS  PubMed  Google Scholar 

  53. Whitcome KK, Shapiro LJ, Lieberman DE (2007) Fetal load and the evolution of lumbar lordosis in bipedal hominins. Nature 450:1075–1078. https://doi.org/10.1038/nature06342

    Article  CAS  PubMed  Google Scholar 

  54. Klaassen Z, Tubbs RS, Apaydin N, Hage R, Jordan R, Loukas M (2011) Vertebral spinal osteophytes. Anat Sci Int 86:1–9. https://doi.org/10.1007/s12565-010-0080-8

    Article  PubMed  Google Scholar 

  55. Rozendaal AS, Scott S, Peckmann TR, Meek S (2020) Estimating sex from the seven cervical vertebrae: an analysis of two European skeletal populations. Forensic Sci Int 306:110072. https://doi.org/10.1016/j.forsciint.2019.110072

    Article  PubMed  Google Scholar 

  56. Burns KR (2013) Forensic anthropology training manual, 3. ed. Pearson, Boston

    Google Scholar 

  57. Krishan K, Chatterjee PM, Kanchan T et al (2016) A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework. Forensic Sci Int 261:165.e1–165.e8. https://doi.org/10.1016/j.forsciint.2016.02.007

    Article  Google Scholar 

  58. Bertsatos A, Chovalopoulou M-E, Brůžek J, Bejdová Š (2020) Advanced procedures for skull sex estimation using sexually dimorphic morphometric features. Int J Legal Med 134:1927–1937. https://doi.org/10.1007/s00414-020-02334-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the two anonymous reviewers for their constructive comments in earlier versions of this manuscript.

Funding

This work was partially supported by an Erasmus+ internship program (7034/2019) issued by the State Scholarships Foundation (Greece) granted to Nefeli Garoufi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nefeli Garoufi.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval

No formal ethical consent is needed from Danish ethical committees to work with CT images of dead humans. Medico-legal autopsies are mandated by the police and CT scans are part of the routine investigation at the Department of Forensic Medicine of the University of Copenhagen. The Department of Forensic Medicine adheres to Danish standards accreditation regarding data security. The data have been fully anonymized. Only age and sex data were retained for the project. Access to the Athens Collection has been granted by the Department of Animal and Human Physiology of the University of Athens.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garoufi, N., Bertsatos, A., Chovalopoulou, ME. et al. Forensic sex estimation using the vertebrae: an evaluation on two European populations. Int J Legal Med 134, 2307–2318 (2020). https://doi.org/10.1007/s00414-020-02430-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02430-w

Keywords

Navigation