Skip to main content

Advertisement

Log in

Distinction between perimortem and postmortem fractures in human cranial bone

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Timing of cranial trauma is challenging in forensic cases and literature on the subject is scarce. This study analysed the macroscopic fracture patterns of perimortem cranial fractures and compared them to experimentally reproduced cranial fractures on dry human craniums. The results showed nine traits associated with fresh cranial fractures: undulated margin, flake defects, peels with peel defects, fissures, crushed margins, bridge, bone scales and beveling. All the traits appear on the outer table or on the inner table of the cranium. Although not all characteristics must be present at the same time in all cranial fractures, they do define a new perimortem fracture pattern. Statistical analyses showed that six of these traits (undulated margins, flake defects, crushed margins, bone scales, fissures and peels) are distinctly related with perimortem (fresh) bone conditions. Considering the most discriminant perimortem traits, a decision-making algorithm is developed as a probabilistic approach to distinguish peri- from postmortem cranial fractures with an accuracy of 87%. This algorithm allows the forensic practitioner to incorporate more confidence during cranial trauma evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sauer NJ (1998) The timing of injuries and manner of death: distinguishing among antemortem, perimortem, and post-mortem trauma. In: Reichs KJ (ed) Forensic osteology: advances in the identification of human remains. Charles C. Thomas, Springfield, pp 321–332

    Google Scholar 

  2. Galtés I (2013) Estudio médico-forense del cadáver en mal estado. In: González J, Gutiérrez A (eds) X Curso de Patología Forense. Sociedad Española de Patología Forense (SEPAF). Gobierno de la Rioja, Logroño, 113–141

  3. Tersigni-Tarrant MA, Shirley NR (2013) Forensic anthropology today. In: Tersigni-Tarrant MA, Shirley NR (eds) Forensic anthropology: an introduction. CRC Press, Florida, p 462

    Google Scholar 

  4. Christensen AM, Passalacqua NV, Bartelink EJ (2014) Forensic anthropology: current methods and practice. Academic Press, Oxford

    Google Scholar 

  5. Galloway A, Zephro L, Wedel VL (2014) Diagnostic criteria for the determination of timing and fracture mechanism. In: Wedel VL, Galloway A (eds) Broken bones. Charles C Thomas, Springfield, p 479

    Google Scholar 

  6. Symes SA, L’Abbé EN, Stull KE et al (2014) Taphonomy and the timing of bone fractures in trauma analysis. In: Pokines JT, Symes SA (eds) Manual of forensic taphonomy. CRC Press, Florida, pp 341–365

    Google Scholar 

  7. Cappella A, Amadasi A, Castoldi E, Mazzarelli D, Gaudio D, Cattaneo C (2014) The difficult task of assessing perimortem and post-mortem fractures on the skeleton: a blind text on 210 fractures of known origin. J Forensic Sci 59:1598–1601

    Article  Google Scholar 

  8. Scheirs S, Malgosa A, Sanchez-Molina D, Ortega-Sánchez M, Velázquez-Ameijide J, Arregui-Dalmases C, Medallo-Muñiz J, Galtés I (2016) New insights in the analysis of blunt force trauma in human bones. Preliminary results. Int J Legal Med 131:867–875

    Article  Google Scholar 

  9. Scheirs S, Hevink B, Ortega-Sánchez M, Jordana X, McGlynn H, Rodriguez-Baeza A, Malgosa A, Galtés I (2019) Intra vitam trauma pattern: changing the paradigm of forensic anthropology? Int J Legal Med 133:661–668

    Article  Google Scholar 

  10. Reber SL, Simmons T (2015) Interpreting injury mechanisms of blunt force trauma from butterfly fracture formation. J Forensic Sci 60:1401–1411. https://doi.org/10.1111/1556-4029.12797

    Article  PubMed  Google Scholar 

  11. Saha S, Hayes WC (1976) Tensile impact properties of human compact bone. J Biomech 9:243–251. https://doi.org/10.1016/0021-9290(76)90010-5

    Article  CAS  PubMed  Google Scholar 

  12. Reich T, Gefen A (2006) Effect of trabecular bone loss on cortical strain rate during impact in an in vitro model of avian femur. Biomed Eng Online 5(45):45. https://doi.org/10.1186/1475-925X-5-45

    Article  PubMed  PubMed Central  Google Scholar 

  13. Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Mateo

    Google Scholar 

  14. Li M, Zhao Z, Yu G, Zhang J (2016) Epidemiology of traumatic brain injury over the world: a systematic review. Austin Neurol Neurosci 1(2):1007

    Google Scholar 

  15. Yoganandan N, Pintar FA, Sances A, Walsh PR, Ewing CL, Thomas DJ, Snyder RG (1995) Biomechanics of skull fracture. J Neurotrauma 12:659–668. https://doi.org/10.1089/neu.1995.12.659

    Article  CAS  PubMed  Google Scholar 

  16. Hart GO (2005) Fracture pattern interpretation in the skull: differentiating blunt force from ballistics trauma using concentric fractures. J Forensic Sci 50:1276–1281

    PubMed  Google Scholar 

  17. Kieser J, Taylor M, Carr D (2013) Forensic biomechanics. Wiley- Blackwell, Oxford

    Google Scholar 

  18. Berryman HE, Symes SA (1998) Recognizing gunshot and blunt cranial trauma through fracture interpretation. In: Reichs KJ (ed) Forensic osteology: advances in the identifica- tion of human remains. Charles C. Thomas, Springfield, pp 333–352

    Google Scholar 

  19. Galloway A (2014) Fracture patterns and skeletal morphology: introduction and the skull. In: Wedel VL, Galloway A (eds) Broken bones. Charles C Thomas, Springfield, pp 63–80

    Google Scholar 

  20. Porta DJ (2005) Biomechanics of impact injury. In: Rich J, Dean DE, Powers RH (eds) Forensic medicine of the lower ex- tremity: human identification and trauma analysis of the thigh, leg, and foot. Humana Press, New Jersey, pp 279–310

    Chapter  Google Scholar 

  21. Galloway A, Zephro L (2005) Skeletal trauma analysis of the lower extremity. In: Rich J, Dean DE, Powers RH (eds) Forensic medicine of the lower extremity: human identification and trauma analysis of the thigh, leg, and foot. Humana Press, New Jersey, pp 253–277

    Chapter  Google Scholar 

  22. Coelho L, Cardoso HFV (2013) Timing of blunt force injuries in long bones: the effects of the environment, PMI length and human surrogate model. Forensic Sci Int 233:230–237. https://doi.org/10.1016/j.forsciint.2013.09.022

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks go to the technicians and personnel staff of the Institute of Legal Medicine and Forensic Sciences of Catalonia (IMLCFC) and to the staff of the medical department of the Autonomous University of Barcelona (UAB). They thank Vincent Scheirs for the design and construction of the Blunt Force Trauma Simulator. Lastly, they are very grateful to the research group of Biological Anthropology (GREAB) for the financial aid from project SGR14-1420.

Funding

This study was financially supported by the Project SGR14-1420, research group of Biological Anthropology (GREAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignasi Galtés.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

All autopsy samples are stored in private collection at the IMLCFC, registered as a collection at the Instituto de Salud Carlos III (Reference C.0004241).

Dry samples (UAB): This study was approved by the Ethic Commission of Human and Animal Experimental Work (CEEAH) of the UAB, in compliance with the ethical regulations.

Informed consent

Informed consent was not required for this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, P., Jordana, X., Scheirs, S. et al. Distinction between perimortem and postmortem fractures in human cranial bone. Int J Legal Med 134, 1765–1774 (2020). https://doi.org/10.1007/s00414-020-02356-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02356-3

Keywords

Navigation