Skip to main content

Advertisement

Log in

Communicating 3D data—interactive 3D PDF documents for expert reports and scientific publications in the field of forensic medicine

  • Method Paper
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Introduction

Modern forensic investigations increasingly revert to 3D imaging techniques, such as computed tomography, magnetic resonance imaging, and 3D surface imaging. Findings are therefore often based on 3D data sets; however, this information is commonly reported and communicated within 2D imagery. The use of interactive 3D PDFs is already established in the scientific community but has yet to be implemented in the field of forensic medicine.

Methods and materials

Three example cases were chosen to serve as exemplary data for the most commonly applied imaging techniques in postmortem imaging. 3D surface models were created from postmortem magnetic resonance imaging (PMMR), postmortem computed tomography (PMCT), and 3D surface imaging data sets.

Results

PMMR revealed a space-occupying subdural hemorrhage that led to ipsilateral compression of the brain tissue of the right hemisphere. PMCT displayed a defect in the skull on the left side of the temporal bone. 3D surface imaging data displayed a patterned discoloration on the inside of the left forearm.

Discussion

Interactive 3D PDFs offer the possibility to communicate 3D information to the reader while maintaining all the benefits of a regular 2D PDF. With Adobe Acrobat, the reader can interactively navigate through 3D data sets and create sufficient depth cues to generate a realistic 3D perception of the data.

Conclusion

The interactive 3D PDF is a useful extension of standard 2D PDFs and has the potential to communicate 3D data to the reader in a more complete, more comprehensible, and less subjective manner than 2D PDFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ebert LC, Schweitzer W, Gascho D, Ruder TD, Flach PM, Thali MJ, Ampanozi G (2016) Forensic 3D visualization of CT data using cinematic volume rendering: a preliminary study. Am J Roentgenol 208:233–240. https://doi.org/10.2214/AJR.16.16499

    Article  Google Scholar 

  2. Ampanozi G, Zimmermann D, Hatch GM, Ruder TD, Ross S, Flach PM, Thali MJ, Ebert LC (2012) Format preferences of district attorneys for post-mortem medical imaging reports: understandability, cost effectiveness, and suitability for the courtroom: a questionnaire based study. Legal Med 14:116–120. https://doi.org/10.1016/j.legalmed.2011.12.008

    Article  PubMed  Google Scholar 

  3. Bolliger SA, Thali MJ (2015) Imaging and virtual autopsy: looking back and forward. Philos Trans R Soc Lond Ser B Biol Sci 370:20140253. https://doi.org/10.1098/rstb.2014.0253

    Article  Google Scholar 

  4. Blau S, Robertson S, Johnstone M (2008) Disaster victim identification: new applications for postmortem computed tomography. J Forensic Sci 53:956–961. https://doi.org/10.1111/j.1556-4029.2008.00742.x

    Article  PubMed  Google Scholar 

  5. Rutty GN, Robinson CE, BouHaidar R, Jeffery AJ, Morgan B (2007) The role of mobile computed tomography in mass fatality incidents. J Forensic Sci 52:1343–1349. https://doi.org/10.1111/j.1556-4029.2007.00548.x

    Article  PubMed  Google Scholar 

  6. Sidler M, Jackowski C, Dirnhofer R, Vock P, Thali M (2007) Use of multislice computed tomography in disaster victim identification—advantages and limitations. Forensic Sci Int 169:118–128. https://doi.org/10.1016/j.forsciint.2006.08.004

    Article  PubMed  Google Scholar 

  7. Rutty GN, Robinson C, Morgan B, Black S, Adams C, Webster P (2009) Fimag: the United Kingdom disaster victim/forensic identification imaging system. J Forensic Sci 54:1438–1442. https://doi.org/10.1111/j.1556-4029.2009.01175.x

    Article  PubMed  Google Scholar 

  8. Ruder TD, Kraehenbuehl M, Gotsmy WF, Mathier S, Ebert LC, Thali MJ, Hatch GM (2012) Radiologic identification of disaster victims: a simple and reliable method using CT of the paranasal sinuses. Eur J Radiol 81:e132–e138. https://doi.org/10.1016/j.ejrad.2011.01.060

    Article  PubMed  Google Scholar 

  9. Thali MJ, Braun M, Brüschweiler W, Dirnhofer R (2000) Matching tire tracks on the head using forensic photogrammetry. Forensic Sci Int 113:281–287. https://doi.org/10.1016/S0379-0738(00)00234-6

    Article  CAS  PubMed  Google Scholar 

  10. Thali MJ, Braun M, Dirnhofer R (2003) Optical 3D surface digitizing in forensic medicine: 3D documentation of skin and bone injuries. Forensic Sci Int 137:203–208. https://doi.org/10.1016/j.forsciint.2003.07.009

    Article  PubMed  Google Scholar 

  11. Buck U, Naether S, Braun M, Bolliger S, Friederich H, Jackowski C, Aghayev E, Christe A, Vock P, Dirnhofer R, Thali MJ (2007) Application of 3D documentation and geometric reconstruction methods in traffic accident analysis: with high resolution surface scanning, radiological MSCT/MRI scanning and real data based animation. Forensic Sci Int 170:20–28. https://doi.org/10.1016/j.forsciint.2006.08.024

    Article  PubMed  Google Scholar 

  12. Buck U, Naether S, Räss B, Jackowski C, Thali MJ (2013) Accident or homicide – virtual crime scene reconstruction using 3D methods. Forensic Sci Int 225:75–84. https://doi.org/10.1016/j.forsciint.2012.05.015

    Article  PubMed  Google Scholar 

  13. Tschui J, Feddern N, Schwendener N, Campana L, Utz S, Schweizer M, Jackowski C, Zech WD (2015) When the prey gets too big: an uncommon road accident involving a motorcyclist, a car and a bird. Int J Legal Med 130:463–467. https://doi.org/10.1007/s00414-015-1188-0

    Article  PubMed  Google Scholar 

  14. Thali MJ, Jackowski C, Oesterhelweg L, Ross SG, Dirnhofer R (2007) VIRTOPSY – the Swiss virtual autopsy approach. Legal Med 9:100–104. https://doi.org/10.1016/j.legalmed.2006.11.011

    Article  PubMed  Google Scholar 

  15. Thali M, Dirnhofer R, Vock P (2009) The Virtopsy approach: 3D optical and radiological scanning and reconstruction in forensic medicine. CRC Press

  16. Wichmann D, Obbelode F, Vogel H, Hoepker WW, Nierhaus A, Braune S, Sauter G, Pueschel K, Kluge S (2012) Virtual autopsy as an alternative to traditional medical autopsy in the intensive care unit. A prospective cohort study. Ann Intern Med 156:123–130. https://doi.org/10.7326/0003-4819-156-2-201201170-00008

    Article  PubMed  Google Scholar 

  17. Barnes DG, Fluke CJ (2008) Incorporating interactive three-dimensional graphics in astronomy research papers. New Astron 13:599–605. https://doi.org/10.1016/j.newast.2008.03.008

    Article  Google Scholar 

  18. Vasilyev V (2010) Towards interactive 3D graphics in chemistry publications. Theor Chem Accounts 125:173–176. https://doi.org/10.1007/s00214-009-0636-7

    Article  CAS  Google Scholar 

  19. Barnes DG, Vidiassov M, Ruthensteiner B, Fluke CJ, Quayle MR, McHenry CR (2013) Embedding and publishing interactive, 3-dimensional, scientific figures in portable document format (PDF) files. PLoS One 8:e69446. https://doi.org/10.1371/journal.pone.0069446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Newe A, Becker L, Schenk A (2014) Application and evaluation of interactive 3D PDF for presenting and sharing planning results for liver surgery in clinical routine. PLoS One 9:e115697

    Article  Google Scholar 

  21. Kumar P, Ziegler A, Ziegler J, Uchanska-Ziegler B, Ziegler A (2008) Grasping molecular structures through publication-integrated 3D models. Trends Biochem Sci 33:408–412. https://doi.org/10.1016/j.tibs.2008.06.004

    Article  CAS  PubMed  Google Scholar 

  22. Kumar P, Ziegler A, Grahn A, Hee CS, Ziegler A (2010) Leaving the structural ivory tower, assisted by interactive 3D PDF. Trends Biochem Sci 35:419–422. https://doi.org/10.1016/j.tibs.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  23. Prilusky J, Hodis E, Canner D, Decatur WA, Oberholser K, Martz E, Berchanski A, Harel M, Sussman JL (2011) Proteopedia: a status report on the collaborative, 3D web-encyclopedia of proteins and other biomolecules. J Struct Biol 175:244–252. https://doi.org/10.1016/j.jsb.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  24. Holliday CM, Tsai HP, Skiljan RJ, George ID, Pathan S (2013) A 3D interactive model and atlas of the jaw musculature of alligator mississippiensis. PLoS One 8:e62806. https://doi.org/10.1371/journal.pone.0062806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lautenschlager S (2014) Palaeontology in the third dimension: a comprehensive guide for the integration of three-dimensional content in publications. Paläontol Z 88:111–121. https://doi.org/10.1007/s12542-013-0184-2

    Article  Google Scholar 

  26. Felicísimo ÁM, Polo M-E, Peris JA (2013) Three-dimensional models of archaeological objects: from laser scanners to interactive PDF documents, Technical Briefs in Historical Archaeology 7:3–18

  27. Adobe Acrobat 7.0.8 Standard, Professional and Acrobat 3D update release information (Windows and Mac OS) - Support Knowledgebase (n.d.) http://www.adobe.com/support/techdocs/333103.html. Accessed 30 Dec 2016

  28. Payne A, Cole K, Simon K, Goodmaster C, Limp F (2009) Designing the next generation virtual museum: making 3D artifacts available for viewing and download, Procs. of CAA. http://proceedings.caaconference.org/files/2009/35_Payne_et_al_CAA2009.pdf. Accessed 29 Jan 2016

  29. de Boer BA, Soufan AT, Hagoort J, Mohun TJ, van den Hoff MJB, Hasman A, Voorbraak FPJM, Moorman AFM, Ruijter JM (2011) The interactive presentation of 3D information obtained from reconstructed datasets and 3D placement of single histological sections with the 3D portable document format. Development. 138:159–167. https://doi.org/10.1242/dev.051086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mavar-Haramija M, Prats-Galino A, Escuder CB, Juanes Méndez JA, Puigdelívoll-Sánchez A (2013) 3D PDF technology combined with JavaScript functions enables the creation and visualization of interactive 3D presentations. ACM, pp 67–72. https://doi.org/10.1145/2536536.2536548

  31. Ruthensteiner B, Heß M (2008) Embedding 3D models of biological specimens in PDF publications. Microsc Res Tech 71:778–786. https://doi.org/10.1002/jemt.20618

    Article  PubMed  Google Scholar 

  32. Ruthensteiner B, Baeumler N, Barnes DG (2010) Interactive 3D volume rendering in biomedical publications. Micron. 41:886.e1–886.e17. https://doi.org/10.1016/j.micron.2010.03.010

    Article  CAS  Google Scholar 

  33. van den Berg G, Moorman AFM (2011) Development of the pulmonary vein and the systemic venous sinus: an interactive 3D overview. PLoS One 6:e22055. https://doi.org/10.1371/journal.pone.0022055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Birr S, Dicken V, Geisler B et al (2011) 3D-PDF: Ein interaktives Tool für das onkologische Reporting und die Operationsplanung von Lungentumoren. In: CURAC 2011, 10. Jahrestagung Der Deutschen Gesellschaft Für Computer- Und Roboterassistierte Chirurgie. Tagungsband, pp 11–16

  35. Danz JC, Katsaros C (2011) Three-dimensional portable document format: a simple way to present 3-dimensional data in an electronic publication. Am J Orthod Dentofac Orthop 140:274–276. https://doi.org/10.1016/j.ajodo.2011.04.010

    Article  Google Scholar 

  36. Phelps A, Naeger DM, Marcovici P (2012) Embedding 3D radiology models in portable document format. Am J Roentgenol 199:1342–1344. https://doi.org/10.2214/AJR.12.8716

    Article  Google Scholar 

  37. Shin DS, Chung MS, Park JS, Park HS, Lee S, Moon YL, Jang HG (2012) Portable document format file showing the surface models of cadaver whole body. J Korean Med Sci 27:849–856. https://doi.org/10.3346/jkms.2012.27.8.849

    Article  PubMed  PubMed Central  Google Scholar 

  38. Graf NA (2012) 3DPDF: open source solutions for incorporating 3D information in PDF files. http://inspirehep.net/record/1211286/files/slac-pub-15295.pdf. Accessed 29 Jan 2016

  39. van de Kamp T, dos Santos Rolo T, Vagovič P, Baumbach T, Riedel A (2014) Three-dimensional reconstructions come to life – interactive 3D PDF animations in functional morphology. PLoS One 9:e102355. https://doi.org/10.1371/journal.pone.0102355

    Article  PubMed  PubMed Central  Google Scholar 

  40. de Bakker BS, de Jong KH, Hagoort J, Oostra R-J, Moorman AFM (2012) Towards a 3-dimensional atlas of the developing human embryo: the Amsterdam experience. Reprod Toxicol 34:225–236. https://doi.org/10.1016/j.reprotox.2012.05.087

    Article  CAS  PubMed  Google Scholar 

  41. de Bakker BS, de Jong KH, Hagoort J, de Bree K, Besselink CT, de Kanter FEC, Veldhuis T, Bais B, Schildmeijer R, Ruijter JM, Oostra R-J, Christoffels VM, Moorman AFM (2016) An interactive three-dimensional digital atlas and quantitative database of human development. Science. 354:aag0053. https://doi.org/10.1126/science.aag0053

    Article  CAS  PubMed  Google Scholar 

  42. Turchini J, Buckland ME, Gill AJ, Battye S (2018) Three-dimensional pathology specimen modeling using “structure-from-motion” photogrammetry: a powerful new tool for surgical pathology. Arch Pathol Lab Med 142:1415–1420. https://doi.org/10.5858/arpa.2017-0145-OA

    Article  PubMed  Google Scholar 

  43. Buck U, Buße K, Campana L, Schyma C (2018) Validation and evaluation of measuring methods for the 3D documentation of external injuries in the field of forensic medicine. Int J Legal Med 132:551–561. https://doi.org/10.1007/s00414-017-1756-6

    Article  PubMed  Google Scholar 

  44. Edelman GJ, Aalders MC (2018) Photogrammetry using visible, infrared, hyperspectral and thermal imaging of crime scenes. Forensic Sci Int 292:181–189. https://doi.org/10.1016/j.forsciint.2018.09.025

    Article  CAS  PubMed  Google Scholar 

  45. Flach PM, Gascho D, Schweitzer W, Ruder TD, Berger N, Ross SG, Thali MJ, Ampanozi G (2014) Imaging in forensic radiology: an illustrated guide for postmortem computed tomography technique and protocols. Forensic Sci Med Pathol 10:583–606. https://doi.org/10.1007/s12024-014-9555-6

    Article  PubMed  Google Scholar 

  46. Zachow S, Zilske M, Hege H-C (2007) 3D reconstruction of individual anatomy from medical image data: segmentation and geometry processing, ZIB. http://webdoc.sub.gwdg.de/ebook/serien/ah/ZIB/ZR-07-41.pdf. Accessed 20 Aug 2017

  47. Prats-Galino A, Reina MA, Mavar Haramija M, Puigdellivol-Sánchez A, Juanes Méndez JA, De Andrés JA (2015) 3D interactive model of lumbar spinal structures of anesthetic interest. Clin Anat 28:205–212. https://doi.org/10.1002/ca.22479

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Dr. Emma-Louise Kessler, for her generous donation to the Zurich Institute of Forensic Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sören Kottner.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The scan data were acquired as part of a forensic judicial investigation into a case. Anonymized results of these data are used in this publication. That data usage is comformant with Swiss laws and ethical standards. Ethical approval was waived by the Ethics Committee Zurich (KEK ZH-No. 15–0686).

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 8098 kb)

ESM 2

(PDF 11800 kb)

ESM 3

(PDF 9872 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kottner, S., Flach, P.M., Gascho, D. et al. Communicating 3D data—interactive 3D PDF documents for expert reports and scientific publications in the field of forensic medicine. Int J Legal Med 134, 1175–1183 (2020). https://doi.org/10.1007/s00414-019-02156-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-019-02156-4

Keywords

Navigation