Skip to main content

Advertisement

Log in

Sex estimation using computed tomography of the mandible

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Sex estimation of skeletal parts is of great value even in the DNA era. When computed tomography (CT) facilities were introduced to forensic institutes, new possibilities for sex estimation emerged. The aim of this study was to develop a CT-based method for sex estimation using the mandible. Twenty-five CT-based measurements of the mandible were developed and carried out on 3D reconstructions (volume rendering) and cross sections of the lower jaw of 438 adult individuals (214 males and 224 females). Intraobserver and interobserver variances of the measurements were examined using intraclass correlation coefficient (ICC) analysis. Five discriminant functions were developed using different states of completeness of the mandible. The success rates of these equations were cross validated twice. The measurements were found to be highly reliable (for intraobserver 0.838 < ICC < 0.995 and for interobserver 0.71 < ICC < 0.996). For a complete mandible, the correct classification rate was 90.8%. For incomplete mandibles, the correct classification rates varied from 72.9 to 85.6%. Cross-validation tests yielded similar success rates, for the complete mandible 89% and for the incomplete mandible 67.5 to 89%. We concluded that CT techniques are appropriate for estimating sex based on the mandible size and shape characteristics. Suggested discriminant functions for sex estimation are given with data on the correct classification rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jobling MA, Gill P (2004) Encoded evidence: DNA in forensic analysis. Nat Rev Genet 5:739–751

    Article  CAS  PubMed  Google Scholar 

  2. Giles E, Elliot O (1963) Sex determination by discriminant function analysis of crania. Am J Phys Anthropol 21:53–68

    Article  CAS  PubMed  Google Scholar 

  3. Steele DG (1976) The estimation of sex on the basis of the talus and calcaneus. Am J Phys Anthropol 45:581–588

    Article  CAS  PubMed  Google Scholar 

  4. Buikstra JE, Ubelaker DH (1994) Standards for data collection from human skeletal remains. Arkansas Archaeological Survey, Research Series No, Fayetteville, p 44

    Google Scholar 

  5. Rogers T, Saunders S (1994) Accuracy of sex determination using morphological traits of the human pelvis. Journal of Forensic Science 39:1047–1056

    Article  CAS  Google Scholar 

  6. Bass W (1995) Human osteology: a laboratory and field method. Thomas, Springfield

    Google Scholar 

  7. Steyn M, İşcan MY (1998) Sexual dimorphism in the crania and mandibles of south African whites. Forensic Sci Int 98:9–16

    Article  CAS  PubMed  Google Scholar 

  8. Bruzek J (2002) A method for visual determination of sex, using the human hip bone. Am J Phys Anthropol 117:157–168

    Article  PubMed  Google Scholar 

  9. Albanese J (2003) A metric method for sex determination using the hipbone and the femur. J Forensic Sci 48:263–273

    Article  PubMed  Google Scholar 

  10. Dayal M, Spocter M, Bidmos M (2008) An assessment of sex using the skull of black south Africans by discriminant function analysis. Homo 59:209–221

    Article  CAS  PubMed  Google Scholar 

  11. Dabbs GR, Moore-Jansen PH (2010) A method for estimating sex using metric analysis of the scapula. J Forensic Sci 55:149–152

    Article  PubMed  Google Scholar 

  12. Urbanová P, Hejna P, Zátopková L, Šafr M (2013) What is the appropriate approach in sex determination of hyoid bones? J Forensic Legal Med 20:996–1003

    Article  Google Scholar 

  13. Sierp I, Henneberg M (2015) The difficulty of sexing skeletons from unknown populations. Journal of Anthropology 2015: Article ID 908535, 13 pages

  14. Franklin D, Freedman L, Milne N, Oxnard C (2006) A geometric morphometric study of sexual dimorphism in the crania of indigenous southern Africans. S Afr J Sci 102:229–238

    Google Scholar 

  15. Franklin D, O'Higgins P, Oxnard C (2008) Sexual dimorphism in the mandible of indigenous south Africans: a geometric morphometric approach. S Afr J Sci 104:101–106

    Google Scholar 

  16. Oettlé A, Pretorius E, Steyn M (2005) Geometric morphometric analysis of mandibular ramus flexure. Am J Phys Anthropol 128:623–629

    Article  PubMed  Google Scholar 

  17. Kimmerle EH, Ross A, Slice D (2008) Sexual dimorphism in America: geometric morphometric analysis of the craniofacial region. J Forensic Sci 53:54–57

    Article  PubMed  Google Scholar 

  18. Vance V, Steyn M (2013) Geometric morphometric assessment of sexually dimorphic characteristics of the distal humerus. Homo 64:329–340

    Article  CAS  PubMed  Google Scholar 

  19. Giles E (1964) Sex determination by discriminant function analysis of the mandible. Am J Phys Anthropol 22:129–135

    Article  CAS  PubMed  Google Scholar 

  20. Waldron T (1987) The relative survival of the human skeleton: implications for palaeopathology. In: Boddinton A, Garland AN, Jana-way RC (eds) Death, decay and reconstruction: approaches to archaeology and forensic science. Manchester University Press, Manchester, pp 55–64

    Google Scholar 

  21. Arnay-de-la-Rosa M, González-Reimers E, Fregel R, Velasco-Vázquez J, Delgado-Darias T, González AM, Larruga J (2007) Canary Islands aborigine sex determination based on mandible parameters contrasted by amelogenin analysis. J Archaeol Sci 34:1515–1522

    Article  Google Scholar 

  22. Martin E (1936) A study of an Egyptian series of mandibles, with special reference to mathematical methods of sexing. Biometrika 28:149–178

    Article  Google Scholar 

  23. Loth SR, Henneberg M (1996) Mandibular ramus flexure: a new morphologic indicator of sexual dimorphism in the human skeleton. Am J Phys Anthropol 99:473–485

    Article  CAS  PubMed  Google Scholar 

  24. Kemkes-Grottenthaler A, Löbig F, Stock F (2002) Mandibular ramus flexure and gonial eversion as morphologic indicators of sex. Homo 53:97–111

    Article  CAS  PubMed  Google Scholar 

  25. Balci Y, Yavuz M, Cağdir S (2005) Predictive accuracy of sexing the mandible by ramus flexure. Homo 55:229–237

    Article  CAS  PubMed  Google Scholar 

  26. Hu K, Koh K, Han S, Shin K, Kim H (2006) Sex determination using nonmetric characteristics of the mandible in Koreans. J Forensic Sci 51:1376–1382

    Article  PubMed  Google Scholar 

  27. Bade KJ (2004) Legal and illegal immigration into Europe: experiences and challenges. European Review 12:339–375

    Article  Google Scholar 

  28. Leth PM (2009) Computerized tomography used as a routine procedure at postmortem investigations. Am J Forensic Med Pathol 30:219–222

    Article  PubMed  Google Scholar 

  29. Thali MJ, Braun M, Wirth J, Vock P, Dirnhofer R (2003) 3D surface and body documentation in forensic medicine: 3-D/CAD photogrammetry merged with 3D radiological scanning. J Forensic Sci 48:1356–1365

    PubMed  Google Scholar 

  30. Thomsen AH, Jurik AG, Uhrenholt L, Vesterby A (2009) An alternative approach to computerized tomography (CT) in forensic pathology. Forensic Sci Int 183:87–90

    Article  PubMed  Google Scholar 

  31. Thali MJ, Yen K, Schweitzer W, Vock P, Boesch C, Ozdoba C, Schroth G, Ith M, Sonnenschein M, Doernhoefer T, Scheurer E, Plattner T, Dirnhofer R (2003) Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)—a feasibility study. J Forensic Sci 48:386–403

    PubMed  Google Scholar 

  32. Dirnhofer R, Jackowski C, Vock P, Potter K, Thali MJ (2006) VIRTOPSY: minimally invasive, imaging-guided virtual autopsy. Radiographics 26:1305–1333

    Article  PubMed  Google Scholar 

  33. Uysal SELMA, Gokharman D, Kacar M, Tuncbilek I, Kosa U (2005) Estimation of sex by 3D CT measurements of the foramen magnum. J Forensic Sci 50:1310–1314

    PubMed  Google Scholar 

  34. Thali M, Yen K, Plattner T, Schweitzer W, Vock P, Ozdoba C, Dirnhofer R (2002) Charred body: virtual autopsy with multi-slice computed tomography and magnetic resonance imaging. J Forensic Sci 47:1326–1331

    PubMed  Google Scholar 

  35. Verhoff MA, Ramsthaler F, Krähahn J, Deml U, Gille RJ, Grabherr S, Thali MJ, Kreutz K (2008) Digital forensic osteology—possibilities in cooperation with the Virtopsy® project. Forensic Sci Int 174:152–156

    Article  PubMed  Google Scholar 

  36. Ramsthaler F, Kettner M, Gehl A, Verhoff MA (2010) Digital forensic osteology: morphological sexing of skeletal remains using volume-rendered cranial CT scans. Forensic Sci Int 195:148–152

    Article  PubMed  Google Scholar 

  37. Roberts IS, Benamore RE, Benbow EW, Lee SH, Harris JN, Jackson A, Mallett S, Patankar T, Peebles C, Roobottom C, Traill ZC (2012) Post-mortem imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study. Lancet 379:136–142

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cicchetti DV (1994) Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess 6:284–290

    Article  Google Scholar 

  39. Hill CA (2000) Technical note: evaluating mandibular ramus flexure as a morphological indicator of sex. Am J Phys Anthropol 111:573–577

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Dan David Foundation for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hila May.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunis, T.S., Sarig, R., Cohen, H. et al. Sex estimation using computed tomography of the mandible. Int J Legal Med 131, 1691–1700 (2017). https://doi.org/10.1007/s00414-017-1554-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-017-1554-1

Keywords

Navigation