Skip to main content
Log in

Mutation analysis of 19 autosomal short tandem repeats in Chinese Han population from Shanghai

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The mutation of short tandem repeat (STR) loci is affected by several factors, such as sex, age, and DNA architectures. Previous studies have shown a different profile of mutation rates at autosomal STR loci among populations. It is important to provide population data and reveal underlying factors influencing the evaluation of STR mutation rates. In this study, we performed a comprehensive analysis on the mutation of 19 autosomal STR loci through 124,773 parent-child allelic transfers from 5846 paternity testing cases. A total of 197 mutations were observed including 187 single-step mutations. The observed mutation rates ranged from 0.15 × 10−3 (TH01) to 4.57 × 10−3 (FGA), and the average mutation rate across all the 19 loci was 1.58 × 10−3. Furthermore, the average mutation rate of STR loci increases with the paternal conception ages and remains relatively stable in different maternal age groups, which suggest the profile of paternal conception ages as a potential factor influencing the evaluation of STR mutation rates and the ratio of paternal versus maternal mutation rate in populations. Multidimensional scaling analysis (MDS) shows a difference in the profile of mutation rates at 13 CODIS STR loci among ethnical groups. Based on our data, our results support that short alleles are biased towards expansion mutation and longer alleles favor contraction mutation. In conclusion, our results provide useful information for further investigation on STR mutation in forensic genetics and population genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Subramanian S, Mishra RK, Singh L (2003) Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol 4:R13. doi:10.1186/gb-2003-4-2-r13

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thompson R, Zoppis S, McCord B (2012) An overview of DNA typing methods for human identification: past, present, and future. Methods Mol Biol 830:3–16. doi:10.1007/978-1-61779-461-2_1

    Article  CAS  PubMed  Google Scholar 

  3. Lai Y, Sun F (2003) The relationship between microsatellite slippage mutation rate and the number of repeat units. Mol Biol Evol 20:2123–2131. doi:10.1093/molbev/msg228

    Article  CAS  PubMed  Google Scholar 

  4. Lu D, Liu Q, Wu W, Zhao H (2012) Mutation analysis of 24 short tandem repeats in Chinese Han population. Int J Legal Med 126:331–335. doi:10.1007/s00414-011-0630-1

    Article  PubMed  Google Scholar 

  5. Qian XQ, Yin CY, Ji Q et al (2015) Mutation rate analysis at 19 autosomal microsatellites. Electrophoresis 36:1633–1639. doi:10.1002/elps.201400558

    Article  CAS  PubMed  Google Scholar 

  6. Sun M, Zhang X, Wu D et al (2015) Mutations of short tandem repeat loci in cases of paternity testing in Chinese. Int J Legal Med 51:18–19. doi:10.1007/s00414-015-1229-8

    Google Scholar 

  7. Yan J, Liu Y, Tang H et al (2006) Mutations at 17 STR loci in Chinese population. Forensic Sci Int 162:53–54. doi:10.1016/j.forsciint.2006.06.016

    Article  CAS  PubMed  Google Scholar 

  8. Sun H, Liu S, Zhang Y, Whittle MR (2014) Comparison of southern Chinese Han and Brazilian Caucasian mutation rates at autosomal short tandem repeat loci used in human forensic genetics. Int J Legal Med 128:1–9. doi:10.1007/s00414-013-0847-2

    Article  PubMed  Google Scholar 

  9. Kornberg A, Bertsch LL, Jackson JF, Khorana HG (1964) Enzymatic synthesis of deoxyribonucleic acid, XVI. Oligonucleotides as templates and the mechanism of their replication. Proc Natl Acad Sci U S A 51:315–323. doi:10.1073/pnas.51.2.315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445. doi:10.1038/nrg1348

    Article  CAS  PubMed  Google Scholar 

  11. Brinkmann B, Klintschar M, Neuhuber F et al (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62:1408–1415. doi:10.1086/301869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu X, Peng M, Fang Z (2000) The direction of microsatellite mutations is dependent upon allele length. Nat Genet 24:396–399. doi:10.1038/74238

    Article  CAS  PubMed  Google Scholar 

  13. Ensenberger MG, Hill CR, McLaren RS et al (2014) Developmental validation of the PowerPlex® 21 System. Forensic Sci Int Genet 9:169–178. doi:10.1016/j.fsigen.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  14. Zou K, Cao Y, Xia Z et al (2012) Forensic application of expressmarker 22 STR loci direct PCR amplification kit. Fa Yi Xue Za Zhi 28:448–450

    CAS  PubMed  Google Scholar 

  15. Zhu BF, Zhang YD, Shen CM et al (2015) Developmental validation of the AGCU 21 + 1 STR kit: a novel multiplex assay for forensic application. Electrophoresis 36:271–276. doi:10.1002/elps.201400333

    Article  CAS  PubMed  Google Scholar 

  16. Butler JM (2009) DNA extraction from forensic samples using chelex. Cold Spring Harb Protoc 4:18–21. doi:10.1101/pdb.prot5229

    Google Scholar 

  17. Fimmers R, Henke L, Henke J, Baur MP (1992) How to deal with mutations in DNA-testing. In: Rittner C, Schneider PM (eds) Advances in Forensic Haemogenetics, Volume 4. Springer-Verlag Berlin Heidelberg, Springer Berlin, pp 285-287

  18. AABB—American Association of Blood Banks Annual Report Summary for Testing in 2008: Relationship Testing Program Unit. http://www.aabb.org/sa/facilities/Documents/rtannrpt08.pdf. Accessed 21 Mar 2016

  19. Xie J, Shao C, Zhou Y et al (2014) Genetic distribution on 20 STR loci from the Han population in Shanghai, China. Forensic Sci Int Genet 9:e30–e31. doi:10.1016/j.fsigen.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  20. Shriver MD, Jin L, Chakraborty R, Boerwinkle E (1993) VNTR allele frequency distributions under the stepwise mutation model: a computer simulation approach. Genetics 134:983–993

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Amos W, Flint J, Xu X (2008) Heterozygosity increases microsatellite mutation rate, linking it to demographic history. BMC Genet 9:72. doi:10.1186/1471-2156-9-72

    Article  PubMed  PubMed Central  Google Scholar 

  22. Amos W (2016) Heterozygosity increases microsatellite mutation rate. Biol Lett 12:20150929. doi:10.1098/rsbl.2015.0929

    Article  PubMed  Google Scholar 

  23. Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 16:551–558. doi:10.1016/S0168-9525(00)02139-9

    Article  CAS  PubMed  Google Scholar 

  24. Forster P, Hohoff C, Dunkelmann B et al (2015) Elevated germline mutation rate in teenage fathers. Proc R Soc B 282:20142898. doi:10.1098/rspb.2014.2898

    Article  PubMed  PubMed Central  Google Scholar 

  25. IBGE—Instituto Brasileiro de Geografia e Estatística (2010) Censo demográfico : 2010 : características gerais da população, religião e pessoas com deficiência. http://biblioteca.ibge.gov.br/visualizacao/periodicos/94/cd_2010_religiao_deficiencia.pdf. Accessed 19 Apr 2016

  26. de Andrade ES, Gomes AV, Raposo G et al (2009) Mutation rates at 14 STR loci in the population from Pernambuco, Northeast Brazil. Forensic Sci Int Genet 3:141–143. doi:10.1016/j.fsigen.2008.11.011

    Article  Google Scholar 

  27. Mardini AC, Rodenbusch R, Schumacher S et al (2013) Mutation rate estimates for 13 STR loci in a large population from Rio Grande do Sul, Southern Brazil. Int J Legal Med 127:45–47. doi:10.1007/s00414-011-0642-x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Bingzhuo He from the Department of Economics, Zhejiang University, for his help concerning statistical analysis. This work was supported by the National Natural Science Funds (81571853 and 31270862) and National Science Foundation for Fostering Talents in Basic Research of China (J1210041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhui Xie.

Additional information

Chengchen Shao and Mingxi Lin equally contributed to this work.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Table S1

The mutation rates of 7 Chinese Han population at 19 STR loci. (XLSX 12 kb)

Table S2

The mutation rates of 6 worldwide populations at 13 CODIS loci. (XLSX 12 kb)

Table S3

The number of mutational events with different MCAF values. (XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, C., Lin, M., Zhou, Z. et al. Mutation analysis of 19 autosomal short tandem repeats in Chinese Han population from Shanghai. Int J Legal Med 130, 1439–1444 (2016). https://doi.org/10.1007/s00414-016-1427-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-016-1427-z

Keywords

Navigation