Skip to main content
Log in

Sex prediction from the femur and hip bone using a sample of CT images from a Spanish population

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Sex estimation and the analysis of sexual dimorphism is an essential part of forensic and archaeological studies of skeletons. However, osteologists often have to rely on single measurements, such as femoral head diameters, to estimate sex, especially when skeletons are incomplete. We have obtained a sex-prediction model based on CT images by applying the logistic regression technique to the measurements obtained for the proximal femoral epiphyses and coxal. Nine variables for 114 Spaniards (58 females and 56 males) of known age and sex from a region close to Madrid have been studied. The prediction equation obtained using these nine variables correctly classifies 99.1 % of these individuals. Reducing the equation to the three most explanatory variables (VDH, HDH and MIB) resulted in the correct classification of 98.3 %. These findings suggest that this procedure is highly effective for sex prediction. However, a lack of expertise may produce biases in the measurements obtained from CT images. Moreover, these equations are only most effective for the population for which they were calculated as human growth and body size are sensitive to nutritional variations, environmental stress and the so-called secular trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Walker PL (2008) Sexing skulls using discriminant function of visually assessed traits. Am J Phys Anthropol 136:39–50

    Article  PubMed  Google Scholar 

  2. Rissech C, Marquez-Grant N, Turbón D (2013) A collation of recently published Western European formulae for age estimation of subadult skeletal remains: recommendations for forensic anthropology and osteoarchaeology. J Forensic Sci 58:S163–S168

    Article  PubMed  Google Scholar 

  3. Cameriere R, Ferrante L (2008) Age estimation in children by measurement of carpals and epiphyses of radius and ulna and open apices in teeth: a pilot study. Forensic Sci Int 174:59–62

    Google Scholar 

  4. Boccome S, Cremasco MM, Bortoluzzi S et al (2010) Age estimation in subadult Egyptian remains. Homo 61:337–358

    Article  Google Scholar 

  5. Charisi D, Eliopoulos C, Vanna V et al (2011) Sexual dimorphism of the arm bones in a Modern Greek population. J Forensic Sci 56:10–18

    Article  PubMed  Google Scholar 

  6. Ruff C (2010) Body size and body shape in early hominins. Implications of the Gona pelvis. J Hum Evol 58:166–178

    Article  PubMed  Google Scholar 

  7. White TD, Black MT, Folken PA (2012) Human osteology, 3rd Ed. Academic

  8. Moore MK (2013) Sex estimation and assessment. In: DiGangi EA, Moore MK (Eds) Research methods in human skeletal biology. Academic, pp 91–116

  9. Spradley MK, Jantz RL (2011) Sex estimation in forensic anthropology: skull versus postcranial elements. J Forensic Sci 56:289–296

    Article  PubMed  Google Scholar 

  10. Kranioti EF, Vorniotakis N, Galiatsou C, Iscan MY, Michalodimitraki M (2009) Sex identification and software development using digital femoral head radiographs. Forensic Anthropology Population Data. Forensic Sci Int 189:113.e1–113.e7

    Google Scholar 

  11. Robinson C, Eisma R, Morgan B, Jeffery A, Graham EA, Black S, Rutty GN (2008) Anthropological measurement of lower limb and foot bones using multi-detector computed tomography. J Forensic Sci 53(6):1289–1294

    PubMed  Google Scholar 

  12. Franklin D, Cardini A, Flaver A, Marks MK (2014) Morphometric analysis of pelvic sexual dimorphism in a contemporary Western Australian population. Int J Legal Med. doi:10.1007/s00414-014-0999-8

    Google Scholar 

  13. Giurazza F, Vescovo R, Schena E, Battisti S, Cazatto RL, Grasso FR, Silvestri S, Denaro V, Zobel B (2012) Determination of stature from skeletal and skull measurements by CT scan evaluation. Forensic Sci Int 222:398e1–398.e9. doi:10.1016/j.forsciint.2012.06.008

    Article  Google Scholar 

  14. Giurazza F, Vescovo R, Schena E, Cazatto RL, D’Agostino F, Grasso FR, Silvestri S, Zobel BB (2013) Stature estimation from scapular measurements by CT scan evaluation in an Italian population. Legal Med 15:202–208

    Article  PubMed  Google Scholar 

  15. Macaluso PJ, Lucena J (2014) Estimation of sex from sternal dimensions derives from chest plate radiographs in contemporary Spaniards. Int J Legal Med 128:389–395

    Article  PubMed  Google Scholar 

  16. López-Alcaraz M, Garamendi PM, Alemán I, Botella LM (2013) Image analysis of pubic bone for sex determination in a computed tomography sample. Int J Legal Med 127:1145–1155

    Article  PubMed  Google Scholar 

  17. Asala SA (2001) Sex determination from the head of the femur of South African whites and blacks. Forensic Sci Int 117:15–22

    Article  CAS  PubMed  Google Scholar 

  18. Iscan MY, Miller-Shaivitz P (1986) Sexual dimorphism in the femur and tibia. In: Reichs K (ed) Forensic osteology: advances in identification of human remains. Thomas, Springfield, pp 102–111

    Google Scholar 

  19. Asala SA, Bidmos MA, Dayal MR (2004) Discriminant function sexing of fragmentary femur of South African blacks. Forensic Sci Int 145:25–29

    Article  CAS  PubMed  Google Scholar 

  20. Hauser R, Smoliński J, Gos T (2005) The estimation of stature on the basis of measurements of the femur. Forensic Sci Int 147(2–3):85–190

    Google Scholar 

  21. Patriquin ML, Stein M, Loth SR (2005) Metric analysis of sex differences in South African black and white pelves. Forensic Sci Int 147:119–127

    Article  CAS  PubMed  Google Scholar 

  22. Steyn M, Iscan MY (1997) Sex determination from the femur and tibia in South African whites. Forensic Sci Int 90:111–119

    Article  CAS  PubMed  Google Scholar 

  23. Tague RG (2000) Do big females have big pelves? Am J Phys Anthropol 112:377–393

    Article  CAS  PubMed  Google Scholar 

  24. Tague RG (2005) Big-bodied males help us recognize that females have big pelves. Am J Phys Anthropol 127:392–405

    Article  PubMed  Google Scholar 

  25. Kurki HK (2011) Pelvic dimorphism in relation to body size and body size dimorphism in humans. J Hum Evol 61:631–643

    Article  PubMed  Google Scholar 

  26. Manisha R, Dayala MR, Steynb M, Kuykendall KL (2008) Stature estimation from bones of South African whites. S Afr J Sci 104:124–128

    Google Scholar 

  27. Trancho GJ, Robledo B, López-Bueis I, Sánchez JA (1997) Sexual determination of the femur using discriminant functions. Analysis of a Spanish population of known sex and age. J Forensic Sci 42:181–185

    CAS  PubMed  Google Scholar 

  28. Slaus M (1997) Discriminant function sexing of fragmentary and complete femora from medieval sites in continental Croatia. Opuscula Archaeol 21:167–175

    Google Scholar 

  29. Mall G, Graw M, Gehring KD, Hubig M (2000) Determination of sex from femora. Forensic Sci Int 113:315–321

    Article  CAS  PubMed  Google Scholar 

  30. Srivastava R, Saini V, Rai KR, Pandey S, Tripathi SL (2012) A study of sexual dimorphism in the femur along North Indians. J Forensic Sci 57:19–23

    Article  PubMed  Google Scholar 

  31. Purkait R (2005) Triangle identified at the proximal end of femur: a new sex determinant. Forensic Sci Int 147:135–139

    Article  PubMed  Google Scholar 

  32. Albanese J, Eklics G, Tuck A (2008) A metric method for sex determination using the proximal femur and fragmentary hipbone. J Forensic Sci 53:1283–1288

    PubMed  Google Scholar 

  33. Christensen AM, Hatch GM, Brogdon BG (2014) A current perspective on forensic radiology. J Forensic Radiol Imaging. doi:10.1016/j.jofri.2014.05.001

    Google Scholar 

  34. Hatch GM, Dedouit F, Christensen AM, Thali MJ, Ruder TD (2014) RADid: a pictorial review of radiologic identification using postmortem CT. J Forensic Radiol Imaging 2:52–59. doi:10.1016/j.jofri.2014.02.039

    Article  Google Scholar 

  35. Lorkiewicz-Musznska D, Przystanska A, Kociemba W, Sroka A, Rewekant A, Zaba C, Paprzycki W (2013) Body mass estimation in modern population using anthropometric measurements from computed tomography. Forensic Sci Int 231:405.e1–405.e6

    Google Scholar 

  36. Grabherr S, Cooper C, Ulrich-Bochsler S, Uldin T, Ross S, Oesterhelweg L, Bolliger S, Christe A, Schnyder P, Mangin P, Thali MJ (2009) Estimation of sex and age of “virtual skeletons”—a feasibility study. Eur Radiol 19:419–429

    Article  PubMed  Google Scholar 

  37. Christensen AM, Crowder CM, Ousley SD, Houck MM (2014) Error and its meaning in forensic science. J Forensic Sci 59(1):123–126. doi:10.1111/1556-4029.12275

    Article  PubMed  Google Scholar 

  38. Hosmer D, Lemeshow S (2004) Applied logistic regression, 2nd edn. Wiley, New York

    Google Scholar 

  39. Albanese J (2003) A metric method for sex determination using the hipbone and the femur. J Forensic Sci 48:263–273

    PubMed  Google Scholar 

  40. Yamauchi T, Yamazaki M, Okawa A, Furuya T, Hayashi K, Sakuma T, Takahashi H, Yanagawa N, Koda M (2010) Efficacy and reliability of highly functional open source DICOM software (OsiriX) in spine surgery. J Clin Neurosci 17:756–759

    Article  PubMed  Google Scholar 

  41. Vandenbussche E, Saffarini M, Hansen U, Taillieu F, Mutschler C (2008) The asymmetric profile of the acetabulum. Clin Orthop Relat Res 466:417–423

    Article  PubMed Central  PubMed  Google Scholar 

  42. Kim G, Jung HJ, Lee HJ, Lee JS, Koo S, Chang SH (2012) Accuracy and reliability of length measurements on three-dimensional computed tomography using open-source Osirix software. J Digit Imaging 25:486–491

    Article  PubMed Central  PubMed  Google Scholar 

  43. Lin LI (1989) A concordance coefficient to evaluate reproducibility. Biometrics 45:255–268

    Article  CAS  PubMed  Google Scholar 

  44. Guttman L (1954) A new approach to factor analysis: the Radex. In: Lazarsfeld PF (ed) Mathematical thinking in the social sciences. Free Press, New York, pp 258–348

    Google Scholar 

  45. Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151

    Article  Google Scholar 

  46. Kranioti EF, Bastir M, Sánches-Messeguer A, Rosas A (2009) A geometric morphometric study of the Cretan humerus for the sex identification. Forensic Sci Int 189:113–121

    PubMed  Google Scholar 

  47. Sakaue K (2004) Sexual determination of long bones in recent Japanese. Anthropol Sci 112:75–81

    Article  Google Scholar 

  48. Slaus M, Strinovic D, Skavic J, Petrovec V (2003) Discriminant function sexing of fragmentary and complete femora: standards for contemporary Croatia. J Forensic Sci 48:509–512

    PubMed  Google Scholar 

  49. Dittrick J, Suchey JM (1986) Sex determination of prehistoric central California skeletal remains using discriminant analysis of the femur and humerus. Am J Phys Anthropol 70:3–9

    Article  CAS  PubMed  Google Scholar 

  50. Chaudhary AK, Jain SK (2014) Osteoscopic assessment of sexual dimorphism in hip bone. Acta Med Int 1(1):28

    Article  Google Scholar 

  51. Ali RS, MacLaughlin SM (1991) Sex identification from the auricular surface of the adult human ilium. Int J Osteoarchaeol 1(1):57–61

    Article  Google Scholar 

  52. Anderson JY, Trinkaus E (1998) Patterns of sexual, bilateral and interpopulational variation in human femoral neck-shaft angles. J Anat 192:279–285

    Article  PubMed Central  PubMed  Google Scholar 

  53. Pujol A, Rissech C, Ventura J, Badosa J, Turbón D (2014) Ontogeny of the female femur. Geometric morphometric analysis applied on current living individuals of a Spanish population. J Anat. doi:10.1111/joa.12209

    PubMed  Google Scholar 

  54. Aiello L, Dean C (1990) Human evolutionary anatomy. Academic

  55. Trevathan WR (1987) Human birth. An evolutionary perspective. de Gruyter, New York

    Google Scholar 

  56. Iscan MY, Loth SR, King CA, Shihai D, Yoshino M (1998) Sexual dimorphism in the humerus: a comparative analysis of Chinese, Japanese and Thais. Forensic Sci Int 98:17–29

    Article  CAS  PubMed  Google Scholar 

  57. ISO/TS 21748: 2010. Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation

Download references

Acknowledgments

This work was funded by the projects CGL2006-02170/BTE from the Ministry of Science and Innovation (DT) and 2009SGR-884 from the General Research Directorate of the Generalitat de Catalunya. We would like to thank JM Sevilla, Head of the Radiology Department at the Hospital Universitario de Guadalajara (Castilla-La Mancha health service-SESCAM) for allowing us to obtain the scientific data used in this study. We also thank C. Rissech and G. Trancho for advise on some aspects of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Turbón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clavero, A., Salicrú, M. & Turbón, D. Sex prediction from the femur and hip bone using a sample of CT images from a Spanish population. Int J Legal Med 129, 373–383 (2015). https://doi.org/10.1007/s00414-014-1069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-014-1069-y

Keywords

Navigation