Skip to main content
Log in

Impact-triggered nanoscale Pb clustering and Pb loss domains in Archean zircon

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Zircon microcrystals are found in many planetary crustal rocks and nanoscale research on grains from well-characterized impact environments on Earth provide a baseline for reconstructing extreme shock and thermal histories elsewhere. However, using zircon to date large impact events can be challenging given that shock-related isotopic re-setting of U–Pb ratios, when measured at micrometre scale, is often incomplete and difficult to interpret as the underlying Pb migration mechanisms are unclear. To better understand shocked zircon U–Pb systematics, we performed atom probe tomography and electron microscopy with the previous SIMS analyses of two shock metamorphosed Mesoarchean zircon grains from deep (≥ 15 km) beneath the centre of the 2.020 Ga giant Vredefort impact structure. We find evidence of two types of impact-related nanoscale Pb mobility. In one grain, clustering has produced ~ 10 nm diameter bodies of radiogenic Pb, unsupported by U and co-located with Al, with an average 207Pb/206Pb ratio of ~ 0.50 (n = 4); the value extant in the grain at the time of impact. Conversely, nearby nanodomains exhibit randomly distributed radiogenic Pb, U and Al and yield 206Pb/238U dates consistent with 100% loss of pre-impact radiogenic Pb atoms during shock metamorphic processes. Notably, domains with multiple Pb clusters occur within micrometres of domains that experienced 100% Pb loss, precluding a uniform radial pattern of thermally-driven Pb diffusion at the grain scale. These cases of broadly coeval clustering and outward Pb mobility during geologically instantaneous shock metamorphism point to unusually rapid, multi-path diffusion processes within sub-micrometre volumes which, when averaged, yield normally discordant U–Pb dates. The isolation of spatially variable styles of Pb retention and loss at nanoscale amidst classical grain-scale shock microstructures shows promise for recognizing and resolving bombardment histories in planetary crusts using zircon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Published SIMS data from Moser et al. (2011)

Similar content being viewed by others

References

  • Blum TB, Reinhard DA, Chen Y, Prosa TJ, Larson DJ, Valley JW (2017) Uncertainty and sensitivity analysis for spatial and spectral processing of Pb isotopes in zircon by atom probe tomography. In: Moser DE, Corfu F, Darling JR, Reddy SM, Tait KT (eds) Microstructural geochronology: planetary records down to the atomic scale. Wiley, New Jersey, pp 327–349

    Google Scholar 

  • Blum TB, Reinhard DA, Coble MA, Spicuzza MJ, Chen Y, Cavosie AJ, Nasdala L, Prosa TJ, Larson DJ, Valley JW (2019) A nanoscale record of impact-induced Pb mobility in lunar zircon. Microsc Microanal 25(S2):2448

    Google Scholar 

  • Cherniak DJ, Watson EB (2003) Diffusion in zircon. Rev Miner Geochem 53(1):113–143

    Google Scholar 

  • Crow CA, McKeegan KD, Moser DE (2017) Coordinated U–Pb geochronology, trace element, Ti-in-zircon thermometry and microstructural analysis of Apollo zircons. Geochim Cosmochim Acta 202:264–284

    Google Scholar 

  • Cupelli CL, Moser DE, Barker IR, Darling JR, Bowman JR, Dhuime B (2014) Discovery of mafic impact melt in the center of the Vredefort dome: archetype for continental residua of early Earth cratering? Geology 42(5):403–406

    Google Scholar 

  • Currie LA (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40(3):586–593

    Google Scholar 

  • Gault B, Moody MP, Cairney JM, Ringer SP (2012) Atom probe microscopy. Springer, New York

    Google Scholar 

  • Ge R, Wilde SA, Nemchin AA, Whitehouse MJ, Bellucci JJ, Erickson TM (2019) Mechanisms and consequences of intra-crystalline enrichment of ancient radiogenic Pb in detrital Hadean zircons from the Jack Hills, Western Australia. Earth Planet Sci Lett 517:38–49

    Google Scholar 

  • Gibson RL, Jones MQW (2002) Late Archean to Palaeoproterozoic geotherms in the Kaapvaal craton: constraints on the thermal evolution of the Witwatersrand Basin. Basin Res 14(2):169–181

    Google Scholar 

  • Gibson RL, Reimold WU (2005) Shock pressure distribution in the Vredefort impact structure, South Africa. Geol Soc Am Spec Pap 384:329–349

    Google Scholar 

  • Hart RJ, Welke HJ, Nicolaysen LO (1981) Geochronology of the deep profile through Archean basement at Vredefort, with implications for early crustal evolution. J Geophys Res Solid Earth 86(B11):10663–10680

    Google Scholar 

  • Hart RJ, Andreoli MA, Tredoux M, De Wit MJ (1990) Geochemistry across an exposed section of Archaean crust at Vredefort, South Africa: with implications for mid-crustal discontinuities. Chem Geol 82:21–50

    Google Scholar 

  • Hart RJ, Moser D, Andreoli MAG (1999) Archean age for the granulite facies metamorphism near the centre of the Vredefort Structure, South Africa. Geology 27(12):1091–1094

    Google Scholar 

  • Kamo SL, Reimold WU, Krogh TE, Colliston WP (1996) A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and granophyre. Earth Planet Sci Lett 144(3–4):369–387

    Google Scholar 

  • Krogh TE, Davis DW, Corfu F (1984) Precise U–Pb zircon and baddeleyite ages for the Sudbury area. In: Pye EG, Naldrett AJ, Giblin PE (eds) The geology and ore development of the Sudbury Structure, Special vol 1. Ontario Geological Survey, pp 431–447

  • Krogh TE, Kamo SL, Sharpton VL, Marin LE, Hildebrand AR (1993) U–Pb ages of single shocked zircons linking distal K/T ejecta to the Chicxulub crater. Nature 366(6457):731–734

    Google Scholar 

  • Kusiak MA, Whitehouse MJ, Wilde SA, Nemchin AA, Clark C (2013) Mobilization of radiogenic Pb in zircon revealed by ion imaging: implications for early Earth geochronology. Geology 41(3):291–294

    Google Scholar 

  • Kusiak MA, Dunkley DJ, Wirth R, Whitehouse MJ, Wilde SA, Marquardt K (2015) Metallic lead nanospheres discovered in ancient zircons. PNAS 112(16):4958–4963

    Google Scholar 

  • La Fontaine A, Piazolo S, Trimby P, Yang P, Cairney JM (2017) Laser-assisted atom probe tomography of deformed minerals: a zircon case study. Microsc Microanal 23(2):404–413

    Google Scholar 

  • Langenhorst F (2002) Shock metamorphism of some minerals: basic introduction and microstructural observations. Bull Czech Geol Surv 77(4):265–282

    Google Scholar 

  • Larson DJ, Foord DT, Petford-Long AK, Liew H, Blamire MG, Cerezo A, Smith GDW (1999) Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79(1–4):287–293

    Google Scholar 

  • Larson DJ, Prosa TJ, Ulfig RM, Geiser BP, Kelly TF (2013) Local electrode atom probe tomography: a user’s guide. Springer, New York

    Google Scholar 

  • Lyon IC, Kusiak MA, Wirth R, Whitehouse MJ, Dunkley DJ, Wilde SA, Schaumlöffel D, Malherbe J, Moore KL (2019) Pb nanospheres in ancient zircon yield model ages for zircon formation and Pb mobilization. Sci Rep 9:13702

    Google Scholar 

  • Meldrum LA, Boatner WJ, Weber J, Ewing RC (1998) Radiation damage in zircon and monazite. Geochim Cosmochim Acta 62(14):2509–2520

    Google Scholar 

  • Miller MK, Russell KF (2007) Atom probe specimen preparation with a dual beam SEM/FIB miller. Ultramicroscopy 107(9):761–766

    Google Scholar 

  • Moser DE (1997) Dating the shock wave and thermal imprint of the giant Vredefort impact, South Africa. Geology 25(1):7–10

    Google Scholar 

  • Moser DE, Flowers RM, Hart RJ (2001) Birth of the Kaapvaal tectosphere 3.08 billion years ago. Science 291:5503

    Google Scholar 

  • Moser DE, Cupelli CL, Barker IR, Flowers RM, Bowman JR, Wooden J, Hart JR (2011) New zircon shock phenomena and their use for dating and reconstruction of large impact structures revealed by electron nanobeam (EBSD, CL, EDS) and isotopic U–Pb and (U–Th)/He analysis of the Vredefort dome. Can J Earth Sci 48(2):117–139

    Google Scholar 

  • Moser DE, Arcuri GA, Reinhard DA, White LF, Darling JR, Barker IR, Larson DJ, Irving AJ, McCubbin FM, Tait KT, Roszjar J, Wittmann A, Davis C (2019) Decline of giant impacts on Mars by 4.48 billion years ago and an early opportunity for habitability. Nat Geosci 12:522–527

    Google Scholar 

  • Oltman E, Ulfig RM, Larson DJ (2009) Background removal methods applied to atom probe data. Microsc Microanal 15(S2):256–257

    Google Scholar 

  • Peterman EM, Reddy SM, Saxey DW, Snoeyenbos DR, Rickard WD, Fougerouse D, Kylander-Clark AR (2016) Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops. Sci Adv 2:e1601318

    Google Scholar 

  • Piazolo S, La Fontaine A, Trimby P, Harley S, Yang L, Armstrong R, Cairney JM (2016) Deformation-induced trace element redistribution in zircon revealed using atom probe tomography. Nat Commun 7:10490

    Google Scholar 

  • Reddy SM, van Riessen A, Saxey DW, Johnson TE, Rickard WDA, Fougerouse D, Fischer S, Prosa TJ, Rice KP, Reinhard DA, Chen Y, Olson D (2016) Mechanisms of deformation-induced trace element migration in zircon resolved by atom probe and correlative microscopy. Geochim Cosmochim Acta 195:158–170

    Google Scholar 

  • Reddy SM, Saxey DW, Rickard DA, Fougerouse D, Montalvo SD, Verberne R, van Riessen A (2020) Atom probe tomography: development and application to the geosciences. Geostand Geoanal Res 44(1):5–50

    Google Scholar 

  • Reinhard DA, Moser DE, Martin I, Rice KP, Chen Y, Olson D, Lawrence D, Prosa TJ, Larson DJ (2017) Atom probe tomography of Phalaborwa baddeleyite and reference zircon BR266. In: Moser DE, Corfu F, Darling JR, Reddy SM, Tait KT (eds) Microstructural geochronology: planetary records down to the atomic scale. Wiley, New Jersey, pp 315–326

    Google Scholar 

  • Rempel AW, Weaver SL (2008) A model for flash weakening by asperity melting during high-speed earthquake slip. J Geophys Res 113:B11308

    Google Scholar 

  • Roszjar J, Moser DE, Hyde BC, Chanmuang C, Tait K (2017) Comparing chemical microstructures of some early solar system zircon from differentiated asteroids, Mars and Earth. In: Moser DE, Corfu F, Darling JR, Reddy SM, Tait KT (eds) Microstructural geochronology: planetary records down to the atomic scale. Wiley, New Jersey, pp 113–136

    Google Scholar 

  • Saxey DW, Reddy SM, Fougerouse D, Rickard WDA (2017) The optimization of zircon analyses by laser-assisted atom probe microscopy: insights from the 91500 zircon standard. In: Moser DE, Corfu F, Darling JR, Reddy SM, Tait KT (eds) Microstructural geochronology: planetary records down to the atomic scale. Wiley, New Jersey, pp 293–313

    Google Scholar 

  • Schreyer W (1983) Metamorphism and fluid inclusions in the basement of the Vredefort Dome, South Africa: guidelines to the origin of the structure. J Petrol 24:26–47

    Google Scholar 

  • Spagnuolo E, Plümper O, Violay M, Cavallo A, Di Toro G (2015) Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes. Sci Rep 5:16112

    Google Scholar 

  • Spray JG, Kelley SP, Reimold WU (1995) Laser-probe 40Ar/39Ar dating of coesite and stishovite-bearing pseudotachylytes and the age of the Vredefort impact event. Meteoritics 30(3):335–343

    Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36(3):359–362

    Google Scholar 

  • Stern RA (2001) A new isotopic and trace element standard for the ion microprobe: preliminary TIMS U–Pb and electron microprobe data. Geological Survey of Canada, Current Research, Radiogenic Age and Isotopic Studies, Ottawa

    Google Scholar 

  • Therriault AM, Grieve RAF, Reimold WU (1997) Original size of the Vredefort structure: implications for the geological evolution of the Witwatersrand Basin. MAPS 32:71–77

    Google Scholar 

  • Thiessen F, Nemchin AA, Snape JF, Bellucci JJ, Whitehouse MJ (2018) Apollo 12 breccia 12013: impact-induced partial Pb loss in zircon and its implications for lunar geochronology. Geochim Cosmochim Acta 230:94–111

    Google Scholar 

  • Thompson K, Gorman B, Larson DJ, van Leer B, Hong L (2006) Minimization of Ga induced FIB damage using low energy clean-up. Microsc Microanal 12(S2):1736–1737

    Google Scholar 

  • Thompson K, Lawrence D, Larson DJ, Olson D, Kelly TF, Gorman B (2007) In-situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107(2–3):131–139

    Google Scholar 

  • Tredoux M, Hart RJ, Carlson RW, Shirey SB (1999) Ultramafic rocks at the center of the Vredefort structure: further evidence for the crust on edge model. Geology 27(10):923–926

    Google Scholar 

  • Valley JW, Cavosie AJ, Ushikubo T, Reinhard DA, Lawrence DF, Larson DJ, Clifton PH, Kelly TF, Wilde SA, Moser DE (2014) Hadean age for a post-magma–ocean zircon confirmed by atom-probe tomography. Nat Geosci 7(3):219–223

    Google Scholar 

  • Valley JW, Reinhard DA, Cavosie AJ, Ushikubo T, Lawrence DF, Larson DJ, Kelly TF, Snoeyenbos DR, Strickland A (2015) Nano- and micro-geochronology in Hadean and Archean zircons by atom-probe tomography and SIMS: new tools for old minerals. Am Mineral 100(7):1355–1377

    Google Scholar 

  • Watson EB, Baxter EF (2007) Diffusion in solid-Earth systems. Earth Planet Sci Lett 253(3–4):307–327

    Google Scholar 

  • White LF, Darling JR, Moser DE, Reinhard DA, Prosa TJ, Bullen D, Olsen D, Larson DJ, Lawrence D, Martin I (2017) Atomic-scale age resolution of planetary events. Nat Commun 8:15597

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge T. Prosa, D. Lawrence, D. Olson, I. Martin, E. Strennen and K. Rice (CAMECA) for the preparation and acquisition of APT microtips. We thank L. White (ROM) for useful discussion on data interpretation. Financial support is acknowledged from the University of Western Ontario, the Ontario Graduate Scholarship program and the NSERC PGS-Doctorate program to G. Arcuri and NSERC Discovery Grant to D. Moser.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Arcuri.

Additional information

Communicated by Daniela Rubatto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Data 1 (XLSX 19 kb)

Supplementary Data 2 (PDF 278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcuri, G.A., Moser, D.E., Reinhard, D.A. et al. Impact-triggered nanoscale Pb clustering and Pb loss domains in Archean zircon. Contrib Mineral Petrol 175, 59 (2020). https://doi.org/10.1007/s00410-020-01698-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-020-01698-w

Keywords

Navigation