Skip to main content
Log in

Crystal chemistry of titanite from the Roxby Downs Granite, South Australia: insights into petrogenesis, subsolidus evolution and hydrothermal alteration

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Titanite textures and chemistry have been investigated from the Roxby Downs Granite, host to the Olympic Dam Cu–U–Au–Ag deposit, South Australia. Three textural subtypes of titanite are documented: primary magmatic (cores and rims); deuteric; and hydrothermal (low T recrystallisation). Magmatic cores are defined by enrichment in LREE (~ 3 wt%), Nb (up to 1 wt%) and Zr relative to rims, which typically contain < 1 wt% LREE and Nb, as well as greater concentrations of Al, Ca, Fe and F. Deuteric titanite occurs as overgrowths on pre-existing titanite and other magmatic accessory minerals (magnetite and ilmenite), and is depleted in HFSE compared to magmatic rims, showing geochemical trends consistent with substitution of Ca2+ + Ti4+ ↔ REE3+ + (Al, Fe)3+. Hydrothermal titanite forms as a low-temperature hydrothermal overprint on primary titanite as well as an alteration product of chloritised phlogopite. Applying Zr-in-titanite geothermometry, three temperature ranges are obtained for titanite crystallisation: magmatic cores ~ 765 to 780 °C; rims ~ 705 to 740 °C; and deuteric ~ 680 to 690 °C. Titanite breakdown is a ubiquitous feature of the Roxby Downs Granite, and occurs through interaction with CO2- and F-rich fluids, forming pseudomorphs characterised by the presence of REE-fluorocarbonates, which are subsequently overprinted by REE-phosphates with increased proximity to the Olympic Dam Breccia Complex. This change is related to interaction with fluids containing appreciable PO42− liberated from local dissolution of fluorapatite. Such observations are consistent with and linked to later/retrograde stages in the formation of the Olympic Dam deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Kontonikas-Charos et al. 2018a)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37:521–552

    Article  Google Scholar 

  • Bernau R, Franz G (1987) Crystal chemistry and genesis of Nb-, V-, and Al-rich metamorphic titanite from Egypt and Greece. Can Mineral 25:695–705

    Google Scholar 

  • Brugger J, Lahaye Y, Costa S, Lambert D, Bateman R (2000) Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, Western Australia). Contrib Mineral Petrol 139:251–264

    Article  Google Scholar 

  • Buick IS, Hermann J, Maas R, Gibson RL (2007) The timing of sub-solidus hydrothermal alteration in the Central Zone, Limpopo Belt (South Africa): constraints from titanite U–Pb geochronology and REE partitioning. Lithos 98:97–117

    Article  Google Scholar 

  • Cao M, Qin K, Li G, Evans NJ, Jin L (2015) In situ LA-(MC)-ICP-MS trace element and Nd isotopic compositions and genesis of polygenetic titanite from the Baogutu reduced porphyry Cu deposit, Western Junggar, NW China. Ore Geol Rev 65:940–954

    Article  Google Scholar 

  • Che XD, Linnen RL, Wang RC, Groat LA, Brand AA (2013) Distribution of trace and rare earth elements in titanite from tungsten and molybdenum deposits in Yukon and British Columbia, Canada. Can Mineral 51:415–438

    Article  Google Scholar 

  • Chen Y-X, Zheng Y-F (2015) Extreme Nb/Ta fractionation in metamorphic titanite from ultrahigh-pressure metagranite. Geochim Cosmochim Acta 150:53–73

    Article  Google Scholar 

  • Cherniak D (1993) Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport. Chem Geol 110:177–194

    Article  Google Scholar 

  • Cherniak D (1995) Sr and Nd diffusion in titanite. Chem Geol 125:219–232

    Article  Google Scholar 

  • Cherniak D (2006) Zr diffusion in titanite. Contrib Mineral Petrol 152:639–647

    Article  Google Scholar 

  • Ciobanu CL, Wade BP, Cook NJ, Mumm AS, Giles D (2013) Uranium-bearing hematite from the Olympic Dam Cu–U–Au deposit, South Australia: a geochemical tracer and reconnaissance Pb–Pb geochronometer. Precambrian Res 238:129–147

    Article  Google Scholar 

  • Ciobanu CL, Kontonikas-Charos A, Slattery A, Cook NJ, Wade BP, Ehrig K (2017) Short-range stacking disorder in mixed-layer compounds: a HAADF STEM study of bastnäsite-parisite intergrowths. Minerals 7:227

    Article  Google Scholar 

  • Corfu F (1996) Multistage zircon and titanite growth and inheritance in an Archean gneiss complex, Winnipeg River Subprovince, Ontario. Earth Planet Sci Lett 141:175–186

    Article  Google Scholar 

  • Corfu F, Stone D (1998) The significance of titanite and apatite U–Pb ages: constraints for the post-magmatic thermal-hydrothermal evolution of a batholithic complex, Berens River area, northwestern Superior Province, Canada. Geochim Cosmochim Acta 62:2979–2995

    Article  Google Scholar 

  • Courtney-Davies L, Zhu Z, Ciobanu CL, Wade BP, Cook NJ, Ehrig K, Cabral AR, Kennedy A (2016) Matrix-matched iron-oxide laser ablation ICP-MS U–Pb geochronology using mixed solution standards. Minerals 6:85

    Article  Google Scholar 

  • Courtney-Davies L, Tapster SR, Ciobanu CL, Cook NJ, Verdugo-Ihl MR, Ehrig KJ, Kennedy AK, Gilbert SE, Condon DJ, Wade BP (2019) A multi-technique evaluation of hydrothermal hematite U–Pb isotope systematics: implications for ore deposit geochronology. Chem Geol 513:54–72

    Article  Google Scholar 

  • Creaser RA (1989) The geology and petrology of Middle Proterozoic felsic magmatism of the Stuart Shelf, South Australia. La Trobe University, Melbourne

    Google Scholar 

  • Creaser RA (1996) Petrogenesis of a Mesoproterozoic quartz latite-granitoid suite from the Roxby Downs area, South Australia. Precambrian Res 79:371–394

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1982) Rock-forming minerals. Orthosilicates Longman, London

    Google Scholar 

  • Della Ventura G, Bellatreccia F, Williams C (1999) Zr- and LREE-rich titanite from Tre Croci, Vico volcanic complex (Latium, Italy). Mineral Mag 63:123–130

    Article  Google Scholar 

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274

    Article  Google Scholar 

  • Ehrig K, McPhie J, Kamenetsky V (2012) Geology and mineralogical zonation of the Olympic Dam Iron Oxide Cu–U–Au–Ag deposit, South Australia. In: Hedenquist JW, Harris M, Camus F (eds) Geology and genesis of major copper deposits and districts of the world: a tribute to Richard H. Sillitoe, vol 16. SEG Special Publication, Tulsa, pp 237–267

    Google Scholar 

  • Enami M, Suzuki K, Liou J, Bird DK (1993) Al–Fe3+ and F–OH substitutions in titanite and constraints on their PT dependence. Eur J Mineral 5:219–232

    Article  Google Scholar 

  • Ferris GM, Schwarz MP, Heithersay P (2002) The geological framework, distribution, and controls of Fe-oxide Cu–Au mineralisation in the Gawler Craton, South Australia: Part 1—geological and tectonic framework. In: Porter TM (ed) Hydrothermal iron oxide copper–gold & related deposits: a global perspective, vol 2. PGC Publishing, Adelaide, pp 9–32

    Google Scholar 

  • Förster H-J (2000) Cerite-(Ce) and thorian synchysite-(Ce) from the Niederbobritzsch granite, Erzgebirge, Germany: implications for the differential mobility of the LREE and Th during alteration. Can Mineral 38:67–79

    Article  Google Scholar 

  • Franz G, Spear FS (1985) Aluminous titanite (sphene) from the eclogite zone, south-central Tauern Window, Austria. Chem Geol 50:33–46

    Article  Google Scholar 

  • Frost BR, Chamberlain KR, Schumacher JC (2001) Sphene (titanite): phase relations and role as a geochronometer. Chem Geol 172:131–148

    Article  Google Scholar 

  • Garber J, Hacker B, Kylander-Clark A, Stearns M, Seward G (2017) Controls on trace element uptake in metamorphic titanite: implications for petrochronology. J Petrol 58:1031–1057

    Article  Google Scholar 

  • Green TH, Pearson NJ (1986) Rare-earth element partitioning between sphene and coexisting silicate liquid at high pressure and temperature. Chem Geol 55:105–119

    Article  Google Scholar 

  • Gromet LP, Silver LT (1983) Rare earth element distributions among minerals in a granodiorite and their petrogenetic implications. Geochim Cosmochim Acta 47:925–939

    Article  Google Scholar 

  • Harlov D, Tropper P, Seifert W, Nijland T, Förster H-J (2006) Formation of Al-rich titanite (CaTiSiO4O–CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2. Lithos 88:72–84

    Article  Google Scholar 

  • Hayden LA, Watson EB (2007) Ti-oxide saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth Planet Sci Lett 258:561–568

    Article  Google Scholar 

  • Hayden LA, Watson EB, Wark DA (2008) A thermobarometer for sphene (titanite). Contrib Mineral Petrol 155:529–540

    Article  Google Scholar 

  • Hunt J, Kerrick D (1977) The stability of sphene; experimental redetermination and geologic implications. Geochim Cosmochim Acta 41:279–288

    Article  Google Scholar 

  • Ismail R, Ciobanu CL, Cook NJ, Teale GS, Giles D, Mumm AS, Wade B (2014) Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide–copper–gold deposit, Yorke Peninsula, South Australia. Lithos 184–187:456–477

    Article  Google Scholar 

  • Jagodzinski E (2005) Compilation of SHRIMP U–Pb geochronological data, Olympic Domain, Gawler Craton. South Australia, 2001–2003: Geoscience Australia Record 2005/020

  • Johnson JP, Cross KC (1995) U–Pb geochronological constraints on the genesis of the Olympic Dam Cu–U–Au–Ag deposit, South Australia. Econ Geol 90:1046–1063

    Article  Google Scholar 

  • Kohn MJ (2017) Titanite petrochronology. Rev Mineral Geochem 83:419–441

    Article  Google Scholar 

  • Kontonikas-Charos A, Ciobanu CL, Cook NJ (2014) Albitization and redistribution of REE and Y in IOCG systems: insights from Moonta-Wallaroo, Yorke Peninsula, South Australia. Lithos 208–209:178–201

    Article  Google Scholar 

  • Kontonikas-Charos A, Ciobanu CL, Cook NJ, Ehrig K, Krneta S, Kamenetsky VS (2017) Feldspar evolution in the Roxby Downs Granite, host to Fe-oxide Cu–Au–(U) mineralisation at Olympic Dam, South Australia. Ore Geol Rev 80:838–859

    Article  Google Scholar 

  • Kontonikas-Charos A, Ciobanu CL, Cook NJ, Ehrig K, Krneta S, Kamenetsky VS (2018a) Rare earth element geochemistry of feldspars: examples from Fe-oxide Cu–Au systems in the Olympic Cu–Au Province, South Australia. Mineral Petrol 112:145–172

    Article  Google Scholar 

  • Kontonikas-Charos A, Ciobanu CL, Cook NJ, Ehrig K, Ismail R, Krneta S, Basak A (2018b) Feldspar mineralogy and rare-earth element (re) mobilization in iron-oxide copper gold systems from South Australia: a nanoscale study. Mineral Mag 82:S173–S197

    Article  Google Scholar 

  • Krneta S, Ciobanu CL, Cook NJ, Ehrig K, Kontonikas-Charos A (2016) Apatite at Olympic Dam, South Australia: a petrogenetic tool. Lithos 262:470–485

    Article  Google Scholar 

  • Krneta S, Ciobanu CL, Cook NJ, Ehrig K, Kontonikas-Charos A (2017) Rare earth element behaviour in apatite from the Olympic Dam Cu–U–Au–Ag deposit, South Australia. Minerals 7:135

    Article  Google Scholar 

  • Liferovich RP, Mitchell RH (2005) Composition and paragenesis of Na-, Nb- and Zr-bearing titanite from Khibina, Russia, and crystal-structure data for synthetic analogues. Can Mineral 43:795–812

    Article  Google Scholar 

  • Macmillan E, Cook NJ, Ehrig K, Ciobanu CL, Pring A (2016) Uraninite from the Olympic Dam IOCG-U–Ag deposit: linking textural and compositional variation to temporal evolution. Am Mineral 101:1295–1320

    Article  Google Scholar 

  • Macmillan E, Cook NJ, Ehrig K, Pring A (2017) Chemical and textural interpretation of late-stage coffinite and brannerite from the Olympic Dam IOCG-Ag–U deposit. Mineral Mag 81:1323–1366

    Article  Google Scholar 

  • Mahood G, Hildreth W (1983) Large partition coefficients for trace elements in high-silica rhyolites. Geochim Cosmochim Acta 47:11–30

    Article  Google Scholar 

  • McLeod GW, Dempster TJ, Faithfull JW (2010) Deciphering magma-mixing processes using zoned titanite from the Ross of Mull Granite, Scotland. J Petrol 52:55–82

    Article  Google Scholar 

  • Middleton AW, Förster H-J, Uysal IT, Golding SD, Rhede D (2013) Accessory phases from the Soultz monzogranite, Soultz-sous-Forêts, France: implications for titanite destabilisation and differential REE, Y and Th mobility in hydrothermal systems. Chem Geol 335:105–117

    Article  Google Scholar 

  • Migdisov A, Williams-Jones A, Brugger J, Caporuscio F (2016) Hydrothermal transport, deposition, and fractionation of the REE: experimental data and thermodynamic calculations. Chem Geol 439:13–42

    Article  Google Scholar 

  • Morad S, El-Ghali MA, Caja MA, Al-Ramadan K, Mansurbeg H (2009) Hydrothermal alteration of magmatic titanite: evidence from Proterozoic granitic rocks, southeastern Sweden. Can Mineral 47:801–811

    Article  Google Scholar 

  • Nakada S (1991) Magmatic processes in titanite-bearing dacites, central Andes of Chile and Bolivia. Am Mineral 76:548–560

    Google Scholar 

  • Oberti R, Smith DC, Rossi G, Caucia F (1991) The crystal-chemistry of high-aluminium titanites. Eur J Mineral 3:777–792

    Article  Google Scholar 

  • Olierook HK, Taylor RJ, Erickson TM, Clark C, Reddy SM, Kirkland CL, Jahn I, Barham M (2019) Unravelling complex geologic histories using U–Pb and trace element systematics of titanite. Chem Geol 504:105–122

    Article  Google Scholar 

  • Pan Y, Fleet ME, MacRae ND (1993) Late alteration in titanite (CaTiSiO5): redistribution and remobilization of rare earth elements and implications for U/Pb and Th/Pb geochronology and nuclear waste disposal. Geochim Cosmochim Acta 57:355–367

    Article  Google Scholar 

  • Piccoli P, Candela P, Rivers M (2000) Interpreting magmatic processes from accessory phases: titanite—a small-scale recorder of large-scale processes. Earth Environ Sci Trans R Soc Edinb 91:257–267

    Google Scholar 

  • Prowatke S, Klemme S (2005) Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochim Cosmochim Acta 69:695–709

    Article  Google Scholar 

  • Ribbe PH (1980) Titanite. Rev Mineral Geochem 5:137–154

    Google Scholar 

  • Russell JK, Groat L, Halleran AA (1994) LREE-rich niobian titanite from Mount Bisson, British Columbia; chemistry and exchange mechanisms. Can Mineral 32:575–587

    Google Scholar 

  • Schmandt DS, Cook NJ, Ciobanu CL, Ehrig K, Wade BP, Gilbert S, Kamenetsky VS (2017) Rare earth element fluorocarbonate minerals from the Olympic Dam Cu–U–Au–Ag deposit, South Australia. Minerals 7:202

    Article  Google Scholar 

  • Schmandt DS, Cook NJ, Ciobanu CL, Ehrig K, Wade BP, Gilbert S, Kamenetsky VS (2019) Rare earth element phosphates from the Olympic Dam Cu–U–Au–Ag deposit, South Australia: recognizing temporal-spatial controls on REE mineralogy in an evolved IOCG system. Can Mineral 57:1–22

    Article  Google Scholar 

  • Scott DJ, St-Onge MR (1995) Constraints on Pb closure temperature in titanite based on rocks from the Ungava orogen, Canada: implications for U–Pb geochronology and PTt path determinations. Geology 23:1123–1126

    Article  Google Scholar 

  • Seifert W (2005) REE-, Zr-, and Th-rich titanite and associated accessory minerals from a kersantite in the Frankenwald, Germany. Mineral Petrol 84:129–146

    Article  Google Scholar 

  • Skirrow RG, Bastrakov EN, Barovich K, Fraser GL, Creaser RA, Fanning CM, Raymond OL, Davidson GJ (2007) Timing of iron oxide Cu–Au–(U) hydrothermal activity and Nd isotope constraints on metal sources in the Gawler craton, South Australia. Econ Geol 102:1441–1470

    Article  Google Scholar 

  • Smith M, Henderson P, Jeffries T, Long J, Williams C (2004) The rare earth elements and uranium in garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: constraints on processes in a dynamic hydrothermal system. J Petrol 45:457–484

    Article  Google Scholar 

  • Smith M, Storey C, Jeffries T, Ryan C (2009) In situ U–Pb and trace element analysis of accessory minerals in the Kiruna district, Norrbotten, Sweden: new constraints on the timing and origin of mineralization. J Petrol 50:2063–2094

    Article  Google Scholar 

  • Storey CD, Smith M (2017) Metal source and tectonic setting of iron oxide–copper–gold (IOCG) deposits: evidence from an in situ Nd isotope study of titanite from Norrbotten, Sweden. Ore Geo Rev 81:1287–1302

    Article  Google Scholar 

  • Storey C, Smith M, Jeffries T (2007) In situ LA-ICP-MS U–Pb dating of metavolcanics of Norrbotten, Sweden: records of extended geological histories in complex titanite grains. Chem Geol 240:163–181

    Article  Google Scholar 

  • Tiepolo M, Oberti R, Vannucci R (2002) Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chem Geol 191:105–119

    Article  Google Scholar 

  • Troitzsch U, Ellis DJ (2002) Thermodynamic properties and stability of AlF-bearing titanite CaTiOSiO4–CaAlFSiO4. Contrib Mineral Petrol 142:543–563

    Article  Google Scholar 

  • Vuorinen JH, Hålenius U (2005) Nb-, Zr- and LREE-rich titanite from the Alnö alkaline complex: crystal chemistry and its importance as a petrogenetic indicator. Lithos 83:128–142

    Article  Google Scholar 

  • Wones DR (1989) Significance of the assemblage titanite + magnetite + quartz in granitic-rocks. Am Mineral 74:744–749

    Google Scholar 

  • Xirouchakis D, Lindsley DH (1998) Equilibria among titanite, hedenbergite, fayalite, quartz, ilmenite, and magnetite: experiments and internally consistent thermodynamic data for titanite. Am Mineral 83:712–725

    Article  Google Scholar 

  • Xu L, Bi X, Hu R, Tang Y, Wang X, Xu Y (2015) LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang-Red River alkaline igneous belt, SW China. Mineral Petrol 109:181–200

    Article  Google Scholar 

Download references

Acknowledgements

BHP Olympic Dam is kindly thanked for providing financial support and access to Olympic Dam samples and facilities. Staff at Adelaide Microscopy are also acknowledged for assistance with microanalysis. This work was supported by the ARC Research Hub for Australian Copper–Uranium (Grant IH130200033), co-supported by BHP Olympic Dam and the South Australian Mining and Petroleum Services Centre of Excellence. We gratefully acknowledge the comments from two anonymous reviewers and Associate Editor Chris Ballhaus who assisted us to clarify ideas expressed in this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alkiviadis Kontonikas-Charos.

Additional information

Communicated by Chris Ballhaus.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kontonikas-Charos, A., Ehrig, K., Cook, N.J. et al. Crystal chemistry of titanite from the Roxby Downs Granite, South Australia: insights into petrogenesis, subsolidus evolution and hydrothermal alteration. Contrib Mineral Petrol 174, 59 (2019). https://doi.org/10.1007/s00410-019-1594-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-019-1594-2

Keywords

Navigation