Skip to main content

Advertisement

Log in

The link between an anorthosite complex and underlying olivine–Ti-magnetite-rich layered intrusion in Damiao, China: insights into magma chamber processes in the formation of Proterozoic massif-type anorthosites

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Mafic–ultramafic intrusions comagmatic with Proterozoic massif-type anorthosites can provide insights into the parental magma from which large volumes of hyper-feldspathic rocks are produced. Recent deep drilling has unveiled a large olivine–Ti-magnetite-rich layered intrusion (named Dawusunangou) beneath the Damiao massif-type anorthosite complex in the North China Craton. The layered intrusion is composed of alternating olivine–Ti-magnetite-rich dark layers and plagioclase-rich light layers (ca. 35–80% plagioclase), with the latter also containing pod- or lens-shaped pyroxene–Ti-magnetite-rich aggregates. This layered intrusion shows low Mg# and REE patterns similar to the overlying Damiao anorthosite complex. Baddeleyite Pb–Pb geochronology yielded indistinguishable crystallization ages of ca. 1735 Ma for both the Dawusunangou layered intrusion and the Damiao anorthosite complex, suggesting coeval emplacement. Using the average bulk compositions of the two intrusions, mass balance calculations assuming 30–40% Dawusunangou and 70–60% Damiao would give a composition similar to high-Al basaltic magma. Collectively, these features indicate that the Dawusunangou layered intrusion represents the mafic residues after the segregation of the Damiao anorthosites from high-Al basaltic parental magma. A short-lived magma chamber is thought to have supplied the two intrusions. In situ crystallization with variable nucleation rates for plagioclase combined with the mafic minerals crystallizing in equilibrium proportions resulted in the formation of repeated dark and light layers of the Dawusunangou layered intrusion. The two intrusions are interpreted to have formed by multiple magma injections, instead of continuous differentiation of one melt. The parental magma was derived from a depleted mantle source with significant crustal contribution during magma evolution. The large Nd–Hf isotopic variations suggest contamination by Paleoarchean to Neoarchean crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ashwal LD (1993) Anorthosites. Minerals and rocks, 21. Springer, Berlin, Heidelberg, pp 83–218

    Chapter  Google Scholar 

  • Ashwal LD, Bybee GM (2017) Crustal evolution and the temporality of anorthosites. Earth Sci Rev 173:307–330. https://doi.org/10.1016/j.earscirev.2017.09.002

    Article  Google Scholar 

  • Ashwal LD, Wooden JL, Emslie RF (1986) Sr, Nd and Pb isotopes in Proterozoic intrusives astride the Grenville Front in Labrador: implications for crustal contamination and basement mapping. Geochim Cosmochim Acta 50:2571–2585. https://doi.org/10.1016/0016-7037(86)90211-5

    Article  Google Scholar 

  • Ashwal LD, Hamilton MA, Morel VPI, Rambeloson R (1998) Geology, petrology and isotope geochemistry of massif-type anorthosites from southwest Madagascar. Contrib Mineral Petrol 133:389–401. https://doi.org/10.1007/s004100050461

    Article  Google Scholar 

  • Bai XS, Zhang LJ, Shen ZQ, Xie P, Wang YY, Hou TZ (2014) Features of geomagnetic anomaly and prospecting potential of the Dawusunangou Fe–Ti–V deposit, Longhua county. Hebei Geol 2:15–16 (in Chinese)

    Google Scholar 

  • Blichert-Toft J, Albarede F (1998) The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet Sci Lett 148:243–258. https://doi.org/10.1016/S0012-821X(97)00040-X

    Article  Google Scholar 

  • Boynton WV (1984) Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier Science Publishers BV, Amsterdam, pp 63–114

    Chapter  Google Scholar 

  • Bybee GM, Ashwal LD (2015) Isotopic disequilibrium and lower crustal contamination in slowly ascending magmas: insights from Proterozoic anorthosites. Geochim Cosmochim Acta 167:286–300. https://doi.org/10.1016/j.gca.2015.07.034

    Article  Google Scholar 

  • Bybee GM, Ashwal LD, Shirey SB, Horan M, Mock T, Andersen TB (2014) Pyroxene megacrysts in Proterozoic anorthosites: implications for tectonic setting, magma source and magmatic processes at the Moho. Earth Planet Sci Lett 389:74–85. https://doi.org/10.1016/j.epsl.2013.12.015

    Article  Google Scholar 

  • Campbell IH, Roeder PL, Dixon JM (1978) Plagioclase buoyancy in basaltic liquids as determined with a centrifuge furnace. Contrib Mineral Petrol 67:369–377. https://doi.org/10.1007/bf00383297

    Article  Google Scholar 

  • Charlier B, Grove TL (2012) Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contrib Mineral Petrol 164:27–44. https://doi.org/10.1007/s00410-012-0723-y

    Article  Google Scholar 

  • Charlier B, Duchesne JC, Vander Auwera J (2006) Magma chamber processes in the Tellnes ilmenite deposit (Rogaland Anorthosite Province, SW Norway) and the formation of Fe–Ti ores in massif-type anorthosites. Chem Geol 234:264–290. https://doi.org/10.1016/j.chemgeo.2006.05.007

    Article  Google Scholar 

  • Charlier B, Duchesne JC, Vander Auwera J, Storme JY, Maquil R, Longhi J (2010) Polybaric fractional crystallization of high-alumina basalt parental magmas in the Egersund-Ogna massif-type anorthosite (Rogaland, SW Norway) constrained by plagioclase and high–alumina orthopyroxene megacrysts. J Petrol 51:2515–2546. https://doi.org/10.1093/petrology/egq066

    Article  Google Scholar 

  • Charlier B, Namur O, Bolle O, Latypov R, Duchesne JC (2015) Fe–Ti–V–P ore deposits associated with Proterozoic massif-type anorthosites and related rocks. Earth Sci Rev 141:56–81. https://doi.org/10.1016/j.earscirev.2014.11.005

    Article  Google Scholar 

  • Chen WT, Zhou MF, Gao JF, Zhao TP (2015) Oscillatory Sr isotopic signature in plagioclase megacrysts from the Damiao anorthosite complex, North China: implications for petrogenesis of massif-type anorthosite. Chem Geol 293–294:1–15. https://doi.org/10.1016/j.chemgeo.2014.11.008

    Article  Google Scholar 

  • Cui XH, Zhai MG, Guo JH, Zhao L, Zhu XY, Wang HZ, Huang GY, Ge SS (2018) Field occurrences and Nd isotopic characteristics of the meta-mafic ultramafic rocks from the Caozhuang Complex, eastern Hebei: implications for early Archean crustal evolution of the North China Craton. Precambrian Res 310:425–442. https://doi.org/10.1016/j.precamres.2018.03.006

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1966) An introduction to rock-forming minerals. Longmans, London., p 528

    Google Scholar 

  • Duchesne JC, Charlier B (2005) Geochemistry of cumulates from the Bjerkreim-Sokndal layered intrusion (S. Norway). Part I: constraints from major elements on the mechanism of cumulate formation and on the jotunite liquid line of descent. Lithos 83:229–254. https://doi.org/10.1016/j.lithos.2005.03.005

    Article  Google Scholar 

  • Duchesne JC, Liégeois JP, Vander Auwera J, Longhi J (1999) The crustal tongue melting model and the origin of massive anorthosites. Terra Nova 11:100–105. https://doi.org/10.1046/j.1365-3121.1999.00232.x

    Article  Google Scholar 

  • Duchesne JC, Shumlyanskyy L, Charlier B (2006) The Fedorivka layered intrusion (Korosten Pluton, Ukraine): an example of highly differentiated ferrobasaltic evolution. Lithos 89:353–376. https://doi.org/10.1016/j.lithos.2006.01.003

    Article  Google Scholar 

  • Duchesne JC, Shumlyanskyy L, Mytrokhync OV (2017) The jotunite of the Korosten AMCG complex (Ukrainian shield): crust- or mantle-derived? Precambrian Res 299:58–74. https://doi.org/10.1016/j.precamres.2017.07.018

    Article  Google Scholar 

  • Emslie RF (1978) Anorthosite massifs, rapakivi granites, and late Proterozoic rifting of North America. Precambrian Res 7:61–98. https://doi.org/10.1016/0301-9268(78)90005-0

    Article  Google Scholar 

  • Emslie RF, Hamilton MA, Theriault RJ (1994) Petrogenesis of a Mid-Proterozoic anorthosite-mangerite-charnockite-granite (AMCG) complex: isotopic and chemical evidence from the Nain Plutonic Suite. J Geol 102:539–558. https://doi.org/10.1086/629697

    Article  Google Scholar 

  • Fan HJ, Li YN, Gao J (2014) Geology and origin of the Dawusunangou Fe–Ti–V deposit, Longhua county. Hebei Geol 2:29–32 (in Chinese)

    Google Scholar 

  • Fram MS, Longhi J (1992) Phase equilibria of dikes associated with Proterozoic anorthosite complexes. Am Mineral 77:605–616

    Google Scholar 

  • Ge S, Zhai M, Li T, Peng P, Santosh M, Shan H, Zuo P (2015) Zircon U–Pb geochronology and geochemistry of low-grade metamorphosed volcanic rocks from the Dantazi Complex: implications for the evolution of the North China Craton. J Asian Earth Sci 111:948–965. https://doi.org/10.1016/j.jseaes.2015.08.021

    Article  Google Scholar 

  • Goode ADT (1977) Intercumulus igneous layering in the Kalka layered intrusion, central Australia. Geol Mag 114:215–218. https://doi.org/10.1017/S0016756800044794

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM–MC–ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147. https://doi.org/10.1016/S0016-7037(99)00343-9

    Article  Google Scholar 

  • Griffin WL, Wang X, Jackson SE, Pearson SE, O’Reilly SY, Xu XS, Zhou XM (2002) Zircon chemistry and magma genesis, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan Igneous complexes. Lithos 61:237–269. https://doi.org/10.1016/S0024-4937(02)00082-8

    Article  Google Scholar 

  • Heaman LM (2009) The application of U–Pb geochronology to mafic, ultramafic and alkaline rocks: an evaluation of three mineral standards. Chem Geol 261:43–52. https://doi.org/10.1016/j.chemgeo.2008.10.021

    Article  Google Scholar 

  • Heaman LM, LeCheminant AN (1993) Paragenesis and U–Pb systematics of baddeleyite (ZrO2). Chem Geol 110:95–126. https://doi.org/10.1016/0009-2541(93)90249-I

    Article  Google Scholar 

  • Hou KJ, Li YH, Zou TR, Qu XM, Shi YR, Xie GQ (2007) Laser ablation–MCICP–MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrol Sin 23:2595–2604 (in Chinese with English abstract)

    Google Scholar 

  • Jakobsen JK, Veksler IV, Tegner C, Brooks CK (2005) Immiscible iron- and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion. Geology 33:885–888. https://doi.org/10.1130/G21724.1

    Article  Google Scholar 

  • Li LX, Li HM, Chen ZL, Wang DH, Chen WS (2010a) Hydrothermal mineralization and fluid inclusion study on the Heishan iron deposit, Chengde county, Hebei province, China. Acta Petrol Sin 26(3):858–870 (in Chinese with English abstract)

    Google Scholar 

  • Li QL, Li XH, Liu Y, Tang GQ, Yang JH, Zhu WG (2010b) Precise U–Pb and Pb–Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. J Anal Atom Spectrom 25:1107–1113. https://doi.org/10.1039/b923444f

    Article  Google Scholar 

  • Li LX, Li HM, Cui YH, Zhu MY, Wang DZ, Yang XQ, Liu MJ, Chen J (2012a) Geochronology and petrogenesis of the Gaositai Cr-bearing ultramafic complex, Hebei Province, China. Acta Petrol Sin 28(11):3757–3771 (in Chinese with English abstract)

    Google Scholar 

  • Li LX, Li HM, Wang DH, Liu MJ, Yang XQ, Chen J (2012b) Ore genesis and ore-forming age of the Tiemahabaqin ultra-low-grade iron deposit in Chengde, Hebei Province, China. Rock Miner Anal 31(5):898–905. https://doi.org/10.15898/j.cnki.11-2131/td.2012.05.011 (in Chinese with English abstract)

    Article  Google Scholar 

  • Li HM, Li LX, Zhang ZC, Santosh M, Liu MJ, Cui YH, Yang XQ, Chen J, Yao T (2014a) Alteration of the Damiao anorthosite complex in the northern North China Craton: implications for high-grade iron mineralization. Ore Geol Rev 57:574–588. https://doi.org/10.1016/j.oregeorev.2013.08.017

    Article  Google Scholar 

  • Li LX, Li HM, Wang DZ, Yang XQ, Liu MJ, Chen J, Yao T (2014b) Zircon geochronology and Hf isotope geochemistry of the ultramafic rocks from the Habaqin complex in northern Hebei Province, China: implication for the activities and sources of the magma. Acta Petrol Sin 30(5):1472–1484 (in Chinese with English abstract)

    Google Scholar 

  • Li LX, Li HM, Li YZ, Yao T, Yang XQ, Chen J (2015) Origin of rhythmic anorthositic–pyroxenitic layering in the Damiao anorthosite complex, China: implications for late-stage fractional crystallization and genesis of Fe–Ti oxide ores. J Asian Earth Sci 113:1035–1055. https://doi.org/10.1016/j.jseaes.2015.01.023

    Article  Google Scholar 

  • Longhi J (2005) A mantle or mafic crustal source for Proterozoic anorthosites? Lithos 83:183–198. https://doi.org/10.1016/j.lithos.2005.03.009

    Article  Google Scholar 

  • Longhi J, Vander Auwera J, Fram MS, Duchesne JC (1999) Some phase equilibrium constraints on the origin of Proterozoic (massif) anorthosites and related rocks. J Petrol 40:339–362. https://doi.org/10.1093/petroj/40.2.339

    Article  Google Scholar 

  • Lu S, Zhao G, Wang H, Hao G (2008) Precambrian metamorphic basement and sedimentary cover of the North China Craton: a review. Precambrian Res 160(1–2):77–93. https://doi.org/10.1016/j.precamres.2007.04.017

    Article  Google Scholar 

  • Ludwig KR (2003) User’s Manual for Isoplot 3.0: a Geochronological toolkit for miscrosoft excel. Berkeley Chronology Center. Special publication 4, pp 1–71

  • Mitchell JN, Scoates JS, Frost CD (1995) High-Al gabbros in the Laramie anorthosite complex, Wyoming: implications for the composition of melts parental to Proterozoic anorthosite. Contrib Mineral Petrol 119:166–180. https://doi.org/10.1007/BF00307279

    Article  Google Scholar 

  • Myers JS, Voordouw RJ, Tettelaar TA (2008) Proterozoic anorthosite–granite Nain batholith: structure and intrusion processes in an active lithosphere-scale fault zone, northern Labrador. Can J Earth Sci 45:909–934. https://doi.org/10.1139/E08-041

    Article  Google Scholar 

  • Namur O, Charlier B, Pirard C, Hermann J, Liégeois JP, Vander Auwera J (2011) Anorthosite formation by plagioclase flotation in ferrobasalt and implications for the lunar crust. Geochim Cosmochim Acta 75:4998–5018. https://doi.org/10.1016/j.gca.2011.06.013

    Article  Google Scholar 

  • Namur O, Abily B, Boudreau AE, Blanchette F, Bush JWM, Ceulenneer G, Charlier B, Donaldson CH, Duchesne JC, Higgins MD, Morata D, Neilsen TFD, O’Driscoll B, Pang KN, Peacock T, Spandler CJ, Toramaru A, Veksler IV (2015) Igneous layering in basaltic magma chambers. In: Charlier B, Namur O, Latypov R, Tegner C (eds) Layered intrusions. Springer Geology, New York, pp 75–152

    Chapter  Google Scholar 

  • Naslund HR, McBirney AR (1996) Mechanisms of formation of igneous layering. In: Cawthorn RG (ed) Layered igneous rocks. Elsevier, Amsterdam, pp 1–44

    Google Scholar 

  • Owens BE, Dymek RF (1992) Fe–Ti–P rocks and massif anorthosite: problems of interpretation illustrated from the Labrieville and St–Urbain plutons, Quebec. Can Mineral 30:163–190

    Google Scholar 

  • Peng P, Zhai MG, Zhang HF, Guo JG (2005) Geochronological constraints on Paleoproterozoic evolution of the North China Craton: SHRIMP zircon ages of different types of mafic dykes. Int Geol Rev 47:492–508. https://doi.org/10.2747/0020-6814.47.5.492

    Article  Google Scholar 

  • Ren KX, Yan GH, Cai JH, Mu BL, Li FT, Wang YB, Chu ZY (2006) Chronology and geological implication of the Paleo-Mesoproterozoic alkaline-rich intrusions belt from the northern part in the North China Craton. Acta Petrol Sin 22(2):377–386 (in Chinese with English abstract)

    Google Scholar 

  • Santosh M, Liu DY, Shi YR, Liu SJ (2013) Paleoproterozoic accretionary orogenesis in the North China Craton: a SHRIMP zircon study. Precambrian Res 227:29–54. https://doi.org/10.1016/j.precamres.2011.11.004

    Article  Google Scholar 

  • Scoates JS, Chamberlain KR (2003) Geochronologic, geochemical and isotopic constraints on the origin of monzonitic and related rocks in the Laramie anorthosite complex, Wyoming, USA. Precambrian Res 124:269–304. https://doi.org/10.1016/S0301-9268(03)00089-5

    Article  Google Scholar 

  • Scoates JS, Mitchell JN (2000) The evolution of troctolite and high Al basaltic magmas in Proterozoic anorthosite plutonic suites and implications for the Voisey’s Bay massive Ni–Cu sulfide deposit. Econ Geol 95:677–701. https://doi.org/10.2113/95.4.677

    Article  Google Scholar 

  • Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324. https://doi.org/10.1016/S0012-821X(04)00012-3

    Article  Google Scholar 

  • Song B, Nutman AP, Liu DY, Wu JS (1996) 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Res 78:79–94. https://doi.org/10.1016/0301-9268(95)00070-4

    Article  Google Scholar 

  • Teng XM, Santosh M (2015) A long-lived magma chamber in the Paleoproterozoic North China Craton: evidence from the Damiao gabbro–anorthosite suite. Precambrian Res 256:79–101. https://doi.org/10.1016/j.precamres.2014.10.018

    Article  Google Scholar 

  • The 4th geological team of Hebei (2007) Geological map of the Damiao-Heishan area in Chengde, China. Scale 1:25000 (in Chinese)

    Google Scholar 

  • Vander Auwera J, Bolle O, Bingen B, Liégeois JP, Bogaerts M, Duchesne JC, De Waele B, Longhi J (2011) Sveconorwegian massif-type anorthosites and related granitoids result from post-collisional melting of a continental arc root. Earth Sci Rev 107:375–397. https://doi.org/10.1016/j.earscirev.2011.04.005

    Article  Google Scholar 

  • Wilde SA, Zhao GC (2005) Archean to Paleoproterozoic evolution of the North China Craton. J Asian Earth Sci 24:519–522. https://doi.org/10.1016/j.jseaes.2004.06.004

    Article  Google Scholar 

  • Woodhead JD, Hergt JM (2005) A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand Geoanal Res 29:183–195. https://doi.org/10.1111/j.1751-908X.2005.tb00891.x

    Article  Google Scholar 

  • Xiang P, Cui ML, Wu HY, Zhang XJ, Zhang LC (2012) Geological characteristics, ages of host rocks and its significance of the Zhoutaizi iron deposit in Luanping, Hebei Province. Acta Petrol Sin 28(11):3655–3669 (in Chinese with English abstract)

    Google Scholar 

  • Yang JH, Wu FY, Wilde SA, Zhao GC (2008) Petrogenesis and geodynamics of late Archean magmatism in eastern Hebei, eastern North China Craton: geochronological, geochemical and Nd–Hf isotopic evidence. Precambrian Res 167:125–149. https://doi.org/10.1016/j.precamres.2008.07.004

    Article  Google Scholar 

  • Ye DH (1989) The geological setting and ore genesis of the Heishan vanadium–titano magnetite and apatite deposits in Chengde, Hebei. A monograph of the No.4 Team of Hebei Geological Survey, pp 1–355 (in Chinese)

  • Zhai MG, Guo JH, Liu WJ (2005) Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review. J Asian Earth Sci 24(5):547–561. https://doi.org/10.1016/j.jseaes.2004.01.018

    Article  Google Scholar 

  • Zhang SH, Liu SW, Zhao Y, Yang JH, Song B, Liu XM (2007) The 1.75–1.68 Ga anorthosite–mangerite–alkali granitoid–rapakivi granite suite from the northern North China Craton: magmatism related to a Paleoproterozoic orogen. Precambrian Res 155:287–312. https://doi.org/10.1016/j.precamres.2007.02.008

    Article  Google Scholar 

  • Zhang SH, Zhao Y, Liu XC, Liu DY, Chen FK, Xie LW, Chen HH (2009) Late Paleozoic to Early Mesozoic mafic–ultramafic complexes from the northern North China Block: constraints on the composition and evolution of the lithospheric mantle. Lithos 110:229–246. https://doi.org/10.1016/j.lithos.2009.01.008

    Article  Google Scholar 

  • Zhao GC, Wilde SA, Cawood PA, Lu LZ (1998) Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Int Geol Rev 40:706–721. https://doi.org/10.1080/00206819809465233s

    Article  Google Scholar 

  • Zhao TP, Chen FK, Zhai MG, Xia B (2004a) Single zircon U–Pb ages and their geological significance of the Damiao anorthosite complex, Hebei Province, China. Acta Petrol Sin 20(3):685–690 (in Chinese with English abstract)

    Google Scholar 

  • Zhao TP, Zhai MG, Xia B, Li HM, Zhang YX, Wan YS (2004b) Study on the zircon SHRIMP ages of the Xiong’er Group volcanic rocks: constraint on the starting time of covering strata in the North China Craton. Chin Sci Bull 49:2495–2502

    Article  Google Scholar 

  • Zhao GC, Sun M, Wilde SA, Li S (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res 136:177–202. https://doi.org/10.1016/j.precamres.2004.10.002

    Article  Google Scholar 

  • Zhao TP, Chen W, Zhou MF (2009) Geochemical and Nd–Hf isotopic constraints on the origin of the ~ 1.74 Ga Damiao anorthosite complex, North China Craton. Lithos 113:673–690. https://doi.org/10.1016/j.lithos.2009.07.002

    Article  Google Scholar 

  • Zhao TP, Chen W, Lu B (2010) Characteristics and origin of Fe–Ti–P oxide deposits associated with Proterozoic massif–type anorthosite. Earth Sci Front 17(2):106–117 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgements

We thank the 4th geological team of HGMB for giving access to drill cores. This study was financially supported by the National Key R&D Program of China (2018YFC0603905) and National Natural Foundation of China (41873062; 41402067; 41672078). LXL acknowledges a fellowship from the China Scholarship Council. We appreciate Xiaoxiao Ling, Jiao Li, Xiaodan Chen, Pan Sun and Mu Liu for their assistance with analyses. We are grateful to LD Ashwal, JC Duchesne and H Keppler for their insightful comments and detailed suggestions that greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li–Xing Li.

Additional information

Communicated by Hans Keppler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, H., Zi, J. et al. The link between an anorthosite complex and underlying olivine–Ti-magnetite-rich layered intrusion in Damiao, China: insights into magma chamber processes in the formation of Proterozoic massif-type anorthosites. Contrib Mineral Petrol 174, 48 (2019). https://doi.org/10.1007/s00410-019-1586-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-019-1586-2

Keywords

Navigation