Skip to main content
Log in

Characterisation of a garnet population from the Sikkim Himalaya: insights into the rates and mechanisms of porphyroblast crystallisation

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The compositional zoning of a garnet population contained within a garnet-grade metapelitic schist from the Lesser Himalayan Sequence of Sikkim (India) provides insight into the rates and kinetic controls of metamorphism, and the extent of chemical equilibration during porphyroblast crystallisation in the sample. Compositional profiles across centrally sectioned garnet crystals representative of the observed crystal size distribution indicate a strong correlation between garnet crystal size and core composition with respect to major end-member components. Systematic steepening of compositional gradients observed from large to small grains is interpreted to reflect a progressive decrease in the growth rate of relatively late-nucleated garnet as a result of an increase in interfacial energies during progressive crystallisation. Numerical simulation of garnet nucleation and growth using an equilibrium approach accounting for chemical fractionation associated with garnet crystallisation reproduces both the observed crystal size distribution and the chemical zoning of the entire garnet population. Simulation of multicomponent intracrystalline diffusion within the population indicates rapid heating along the pressure–temperature path, in excess of 100 \(^{\circ }\)C Myr\(^{-1}\). Radial garnet growth is correspondingly rapid, with minimum rates of 1.4 mm Myr\(^{-1}\). As a consequence of such rapid crystallisation, the sample analysed in this study provides a close to primary record of the integrated history of garnet nucleation and growth. Our model suggests that nucleation of garnet occurred continuously between incipient garnet crystallisation at \(\sim\)520 \(^{\circ }\)C, 4.5 kbar and peak metamorphic conditions at \(\sim\)565 \(^{\circ }\)C, 5.6 kbar. The good fit between the observed and predicted garnet growth zoning suggests that the departure from equilibrium associated with garnet nucleation and growth was negligible, despite the particularly fast rates of metamorphic heating. Consequently, rates of major element diffusion in the intergranular medium during garnet crystallisation are interpreted to have been correspondingly rapid. It is, therefore, possible to simulate the prograde metamorphic history of our sample as a succession of equilibrium states of a chemical system modified by chemical fractionation associated with garnet crystallisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ague JJ, Baxter EF (2007) Brief thermal pulses during mountain building recorded by Sr diffusion in apatite and multicomponent diffusion in garnet. Earth Planet Sci Lett 261(3):500–516

    Article  Google Scholar 

  • Anczkiewicz R, Chakraborty S, Dasgupta S, Mukhopadhyay D, Kołtonik K (2014) Timing, duration and inversion of prograde Barrovian metamorphism constrained by high resolution Lu–Hf garnet dating: A case study from the Sikkim Himalaya, NE India. Earth Planet Sci Lett 407:70–81

    Article  Google Scholar 

  • Anderson DE, Olimpio J (1977) Progressive homogenization of metamorphic garnets, South Morar, Scotland: evidence for volume diffusion. Can Mineral 15(2):205–216

    Google Scholar 

  • Baldwin J, Powell R, Brown M, Moraes R, Fuck R (2005) Modelling of mineral equilibria in ultrahigh-temperature metamorphic rocks from the Anápolis-Itauçu Complex, central Brazil. J Metamorph Geol 23(7):511–531

    Article  Google Scholar 

  • Balluffi RW, Allen SM, Carter WC (2005) Kinetics of materials. Wiley, Hoboken

    Book  Google Scholar 

  • Baumgartner J, Dey A, Bomans PH, Le Coadou C, Fratzl P, Sommerdijk NA, Faivre D (2013) Nucleation and growth of magnetite from solution. Nat Mater 12(4):310–314

    Article  Google Scholar 

  • Caddick MJ, Konopásek J, Thompson AB (2010) Preservation of garnet growth zoning and the duration of prograde metamorphism. J Petrol 51(11):2327–2347

    Article  Google Scholar 

  • Cahn JW (1957) Nucleation on dislocations. Acta Metall 5(3):169–172

    Article  Google Scholar 

  • Carlson WD (1989) The significance of intergranular diffusion to the mechanisms and kinetics of porphyroblast crystallization. Contrib Mineral Petrol 103(1):1–24

    Article  Google Scholar 

  • Carlson WD (2002) Presidential address. Scales of disequilibrium and rates of equilibration during metamorphism. Am Mineral 87(2–3):185–204

    Article  Google Scholar 

  • Carlson WD (2012) Rates and mechanism of Y, REE, and Cr diffusion in garnet. Am Mineral 97(10):1598–1618

    Article  Google Scholar 

  • Carlson WD, Denison C (1992) Mechanisms of porphyroblast crystallization: results from high-resolution computed X-ray tomography. Science 257(5074):1236–1239

    Article  Google Scholar 

  • Carlson WD, Pattison DR, Caddick MJ (2015) Beyond the equilibrium paradigm: How consideration of kinetics enhances metamorphic interpretation. Am Mineral 100(8–9):1659–1667

    Article  Google Scholar 

  • Casey WH, Ludwig C (1996) The mechanism of dissolution of oxide minerals. Nature 381(6582):506

    Article  Google Scholar 

  • Cashman KV, Ferry JM (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. Contrib Mineral Petrol 99(4):401–415

    Article  Google Scholar 

  • Castro AE, Spear FS (2016) Reaction overstepping and re-evaluation of peak P–T conditions of the blueschist unit Sifnos, Greece: implications for the Cyclades subduction zone. Int Geol Rev 59(5–6):548–562

    Google Scholar 

  • Chakraborty S, Anczkiewicz R, Gaidies F, Rubatto D, Sorcar N, Faak K, Mukhopadhyay D, Dasgupta S (2016) A review of thermal history and timescales of tectonometamorphic processes in Sikkim Himalaya (NE India) and implications for rates of metamorphic processes. J Metamorph Geol 34(8):785–803

    Article  Google Scholar 

  • Chakraborty S, Ganguly J (1992) Cation diffusion in aluminosilicate garnets: experimental determination in spessartine-almandine diffusion couples, evaluation of effective binary diffusion coefficients, and applications. Contrib Mineral Petrol 111(1):74–86

    Article  Google Scholar 

  • Chernoff C, Carlson W (1997) Disequilibrium for Ca during growth of pelitic garnet. J Metamorph Geol 15(4):421–438

    Article  Google Scholar 

  • Christian JW (2002) The theory of transformations in metals and alloys. Elsevier, Amsterdam

  • Coggan R, Holland T (2002) Mixing properties of phengitic micas and revised garnet-phengite thermometers. J Metamorph Geol 20:683–696

    Article  Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planetary Sci Lett 236(1–2):524–541

    Article  Google Scholar 

  • Connolly J, Cesare B (1993) C-O-H-S fluid composition and oxygen fugacity in graphitic metapelites. J Metamorph Geol 11(3):379–379

    Article  Google Scholar 

  • Cottle J, Waters D, Riley D, Beyssac O, Jessup M (2011) Metamorphic history of the South Tibetan detachment system, Mt. Everest region, revealed by RSCM thermometry and phase equilibria modelling. J Metamorph Geol 29(5):561–582

    Article  Google Scholar 

  • Daniel C, Spear F (1999) The clustered nucleation and growth processes of garnet in regional metamorphic rocks from north-west Connecticut, USA. J Metamorph Geol 17(5):503–520

    Google Scholar 

  • Daniel CG, Spear FS (1998) Three-dimensional patterns of garnet nucleation and growth. Geology 26(6):503–506

    Article  Google Scholar 

  • Dasgupta S, Chakraborty S, Neogi S (2009) Petrology of an inverted Barrovian sequence of metapelites in Sikkim Himalaya, India: constraints on the tectonics of inversion. Am J Sci 309(1):43–84

    Article  Google Scholar 

  • Dasgupta S, Ganguly J, Neogi S (2004) Inverted metamorphic sequence in the Sikkim Himalayas: crystallization history, P–T gradient and implications. J Metamorph Geol 22(5):395–412

    Article  Google Scholar 

  • de Capitani C, Brown TH (1987) The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochimica et Cosmochimica Acta 51(10):2639–2652

    Article  Google Scholar 

  • de Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95(7):1006–1016

    Article  Google Scholar 

  • de Sigoyer J, Chavagnac V, Blichert-Toft J, Villa IM, Luais B, Guillot S, Cosca M, Mascle G (2000) Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: multichronology of the Tso Morari eclogites. Geology 28(6):487–490

    Article  Google Scholar 

  • Dohmen R, Chakraborty S (2003) Mechanism and kinetics of element and isotopic exchange mediated by a fluid phase. Am Mineral 88(8–9):1251–1270

    Google Scholar 

  • Dragovic B, Samanta LM, Baxter EF, Selverstone J (2012) Using garnet to constrain the duration and rate of water-releasing metamorphic reactions during subduction: an example from Sifnos, Greece. Chem Geol 314:9–22

    Article  Google Scholar 

  • Dubey CS, Catlos E, Sharma B (2005) Modelling of PTt paths constrained by mineral chemistry and monazite dating of metapelites in relationship to MCT activity in Sikkim Eastern Himalayas. Metamorphism and crustal evolution. Atlantic Publishers, New Delhi

    Google Scholar 

  • Faryad SW, Chakraborty S (2005) Duration of Eo-Alpine metamorphic events obtained from multicomponent diffusion modeling of garnet: a case study from the Eastern Alps. Contrib Mineral Petrol 150(3):306–318

    Article  Google Scholar 

  • Finlay C, Kerr A (1987) Evidence for differences in growth rate among garnets in pelitic schists from northern Sutherland, Scotland. Mineral Mag 51(62):569–576

    Article  Google Scholar 

  • Finlay CA, Kerr A (1979) Garnet growth in a metapelite from the Moinian rocks of northern Sutherland, Scotland. Contrib Mineral Petrol 71(2):185–191

    Article  Google Scholar 

  • Fisher GW (1973) Nonequilibrium thermodynamics as a model for diffusion-controlled metamorphic processes. Am J Sci 273(10):897–924

    Article  Google Scholar 

  • Fisher GW (1978) Rate laws in metamorphism. Geochimica et Cosmochimica Acta 42(7):1035–1050

    Article  Google Scholar 

  • Florence FP, Spear FS (1991) Effects of diffusional modification of garnet growth zoning on PT path calculations. Contrib Mineral Petrol 107(4):487–500

    Article  Google Scholar 

  • Gaidies F (2017) Nucleation in geological materials. EMU Notes in Mineralogy, vol 16. European Mineralogical Union, book section 1, pp 347–371

  • Gaidies F, Abart R, De Capitani C, Schuster R, Connolly J, Reusser E (2006) Characterization of polymetamorphism in the Austroalpine basement east of the Tauern Window using garnet isopleth thermobarometry. J Metamorph Geol 24(6):451–475

    Article  Google Scholar 

  • Gaidies F, De Capitani C, Abart R (2008) THERIA_G: a software program to numerically model prograde garnet growth. Contrib Mineral Petrol 155(5):657–671

    Article  Google Scholar 

  • Gaidies F, Heinrich W, Milke R, Abart R (2017) Metamorphic mineral reactions. EMU Notes in Mineralogy, vol 16. European Mineralogical Union, book section 14, pp 469–540

  • Gaidies F, Pattison D, De Capitani C (2011) Toward a quantitative model of metamorphic nucleation and growth. Contrib Mineral Petrol 162(5):975–993

    Article  Google Scholar 

  • Gaidies F, Petley-Ragan A, Chakraborty S, Dasgupta S, Jones P (2015) Constraining the conditions of Barrovian metamorphism in Sikkim, India: P–T–t paths of garnet crystallization in the Lesser Himalayan Belt. J Metamorph Geol 33(1):23–44

    Article  Google Scholar 

  • Hirsch DM, Prior DJ, Carlson WD (2003) An overgrowth model to explain multiple, dispersed high-Mn regions in the cores of garnet porphyroblasts. Am Mineral 88(1):131–141

    Article  Google Scholar 

  • Holland T, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16(3):309–343

    Article  Google Scholar 

  • Kelly E, Carlson W, Ketcham R (2013) Magnitudes of departures from equilibrium during regional metamorphism of porphyroblastic rocks. J Metamorph Geol 31(9):981–1002

    Article  Google Scholar 

  • Ketcham RA (2005) Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1(1):32–41

    Article  Google Scholar 

  • Kohn MJ (2004) Oscillatory- and sector-zoned garnets record cyclic (?) rapid thrusting in central Nepal. Geochem Geophys Geosyst 5(12):1–9

    Article  Google Scholar 

  • Konrad-Schmolke M, Halama R (2014) Combined thermodynamic-geochemical modeling in metamorphic geology: boron as tracer of fluid-rock interaction. Lithos 208:393–414

    Article  Google Scholar 

  • Konrad-Schmolke M, Handy MR, Babist J, O’Brien PJ (2005) Thermodynamic modelling of diffusion-controlled garnet growth. Contrib Mineral Petrol 149(2):181–195

    Article  Google Scholar 

  • Kretz R (1966) Interpretation of the shape of mineral grains in metamorphic rocks. J Petrol 7(1):68–94

    Article  Google Scholar 

  • Kretz R (1969) On the spatial distribution of crystals in rocks. Lithos 2(1):39–65

    Article  Google Scholar 

  • Kretz R (1974) Some models for the rate of crystallization of garnet in metamorphic rocks. Lithos 7(3):123–131

    Article  Google Scholar 

  • Kretz R (1993) A garnet population in Yellowknife schist, Canada. J Metamorph Geol 11(1):101–120

    Article  Google Scholar 

  • Lanari P, Riel N, Guillot S, Vidal O, Schwartz S, Pêcher A, Hattori KH (2013) Deciphering high-pressure metamorphism in collisional context using microprobe mapping methods: application to the stak eclogitic massif (northwest Himalaya). Geology 41(2):111–114

    Article  Google Scholar 

  • Lasaga AC (1981) Rate laws of chemical reactions. Rev Mineral (United States) 8:1–68

    Google Scholar 

  • Lasaga AC (1986) Metamorphic reaction rate laws and development of isograds. Mineral Mag 50(3, 357):359–373

  • Loomis TP (1982) Numerical simulations of crystallization processes of plagioclase in complex melts: the origin of major and oscillatory zoning in plagioclase. Contrib Mineral Petrol 81(3):219–229

    Article  Google Scholar 

  • Mohan A, Windley B, Searle M (1989) Geothermobarometry and development of inverted metamorphism in the Darjeeling-Sikkim region of the eastern Himalayan. J Metamorph Geol 7(1):95–110

    Article  Google Scholar 

  • Mottram CM, Argles T, Harris N, Parrish R, Horstwood M, Warren C, Gupta S (2014a) Tectonic interleaving along the Main Central Thrust, Sikkim Himalaya. J Geol Soc 171(2):255–268

    Article  Google Scholar 

  • Mottram CM, Warren CJ, Regis D, Roberts NM, Harris NB, Argles TW, Parrish RR (2014b) Developing an inverted Barrovian sequence; insights from monazite petrochronology. Earth Planet Sci Lett 403:418–431

    Article  Google Scholar 

  • Oliver G, Chen F, Buchwaldt R, Hegner E (2000) Fast tectonometamorphism and exhumation in the type area of the Barrovian and Buchan zones. Geology 28(5):459–462

    Article  Google Scholar 

  • Palin RM, Weller OM, Waters DJ, Dyck B (2016) Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations. Geosci Front 7(4):591–607

    Article  Google Scholar 

  • Pattison D, DeBuhr C (2015) Petrology of metapelites in the Bugaboo aureole, British Columbia, Canada. J Metamorph Geolgy 33(5):437–462

    Article  Google Scholar 

  • Pattison DR, De Capitani C, Gaidies F (2011) Petrological consequences of variations in metamorphic reaction affinity. J Metamorph Geol 29(9):953–977

    Article  Google Scholar 

  • Pattison DR, Tinkham D (2009) Interplay between equilibrium and kinetics in prograde metamorphism of pelites: an example from the Nelson aureole, British Columbia. J Metamorph Geol 27(4):249–279

    Article  Google Scholar 

  • Paul D, Chandy K, Bhalla J, Prasad N, Sengupta N (1982) Geochronology and geochemistry of Lingtse Gneiss, Darjeeling-Sikkim Himalayas. Indian J Earth Sci 9(1):11–17

    Google Scholar 

  • Powell R, Holland T, Worley B (1998) Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. J Metamorph Geol 16(4):577–588

    Article  Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Miner Mag 66(5):689–708

    Article  Google Scholar 

  • Putnis A (2014) Why mineral interfaces matter. Science 343(6178):1441–1442

    Article  Google Scholar 

  • Shore M, Fowler AD (1996) Oscillatory zoning in minerals: a common phenomenon. Can Mineral 34:1111–1126

    Google Scholar 

  • Skora S, Baumgartner LP, Mahlen NJ, Johnson CM, Pilet S, Hellebrand E (2006) Diffusion-limited REE uptake by eclogite garnets and its consequences for Lu–Hf and Sm-Nd geochronology. Contrib Mineral Petrol 152(6):703–720

    Article  Google Scholar 

  • Smye AJ, Bickle MJ, Holland TJ, Parrish RR, Condon DJ (2011) Rapid formation and exhumation of the youngest Alpine eclogites: a thermal conundrum to Barrovian metamorphism. Earth Planet Sci Lett 306(3):193–204

    Article  Google Scholar 

  • Spear FS, Daniel CG (1998) Three-dimensional imaging of garnet porphyroblast sizes and chemical zoning: nucleation and growth history in the garnet zone. Geol Mater Res 1(1):1–44

    Article  Google Scholar 

  • Spear FS, Selverstone J, Hickmott D, Crowley P, Hodges KV (1984) PT paths from garnet zoning: a new technique for deciphering tectonic processes in crystalline terranes. Geology 12(2):87–90

    Article  Google Scholar 

  • Spear FS, Thomas JB, Hallett BW (2014) Overstepping the garnet isograd: a comparison of QuiG barometry and thermodynamic modeling. Contrib Mineral Petrol 168(3):1–15

    Article  Google Scholar 

  • Stowell H, Zuluaga C, Boyle A, Bulman G (2011) Garnet sector and oscillatory zoning linked with changes in crystal morphology during rapid growth, North Cascades, Washington. Am Mineral 96(8–9):1354–1362

    Article  Google Scholar 

  • Stünitz H (1998) Syndeformational recrystallization—dynamic or compositionally induced? Contrib Mineral Petrol 131:219–236

    Article  Google Scholar 

  • Teng HH (2013) How ions and molecules organize to form crystals. Elements 9(3):189–194

    Article  Google Scholar 

  • Thompson A (1986) The role of mineral kinetics in the development of metamorphic microtextures. In: Fluid—rock interactions during metamorphism. Springer, Heidelberg, pp 154–193

  • Vance D, Mahar E (1998) Pressure–temperature paths from PT pseudosections and zoned garnets: potential, limitations and examples from the Zanskar Himalaya, NW India. Contrib Mineral Petrol 132(3):225–245

    Article  Google Scholar 

  • Viete DR, Hermann J, Lister GS, Stenhouse IR (2011) The nature and origin of the Barrovian metamorphism, Scotland: diffusion length scales in garnet and inferred thermal time scales. J Geol Soc 168(1):115–132

    Article  Google Scholar 

  • Viete DR, Lister GS (2016) On the significance of short-duration regional metamorphism. J Geol Soc 174(3):377–392

    Article  Google Scholar 

  • Walther JV, Wood BJ (1984) Rate and mechanism in prograde metamorphism. Contrib Mineral Petrol 88(3):246–259

    Article  Google Scholar 

  • Waters D, Lovegrove D (2002) Assessing the extent of disequilibrium and overstepping of prograde metamorphic reactions in metapelites from the Bushveld Complex aureole, South Africa. J Metamorph Geol 20(1):135–149

    Article  Google Scholar 

  • Weller O, St-Onge M, Waters D, Rayner N, Searle M, Chung S-L, Palin R, Lee Y-H, Xu X (2013) Quantifying Barrovian metamorphism in the Danba structural culmination of eastern Tibet. J Metamorph Geol 31(9):909–935

    Article  Google Scholar 

  • White R, Pomroy N, Powell R (2005) An in situ metatexite-diatexite transition in upper amphibolite facies rocks from broken hill, australia. J Metamorph Geol 23(7):579–602

    Article  Google Scholar 

  • White R, Powell R, Holland T, Worley B (2000) The effect of TiO\(_2\) and Fe\(_2\)O\(_3\) on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K\(_2\)O-FeO-MgO-Al\(_2\)O\(_3\)-SiO\(_2\)-H\(_2\)O-TiO\(_2\)-Fe\(_2\)O\(_3\)-O\(_2\) and Fe\(_2\)O\(_3\) on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K\(_2\)O-FeO-MgO-Al\(_2\)O\(_3\)-SiO\(_2\)-H\(_2\)O-TiO\(_2\)-Fe\(_2\)O\(_3\). J Metamorph Geol 18(5):497–512

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95(1):185

    Article  Google Scholar 

  • Zeh A (2006) Calculation of garnet fractionation in metamorphic rocks, with application to a flat-top, Y-rich garnet population from the Ruhla Crystalline Complex, Central Germany. J Petrol 47(12):2335–2356

    Article  Google Scholar 

  • Zener C (1949) Theory of growth of spherical precipitates from solid solution. J Appl Phys 20(10):950–953

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by NSERC research Grant 315857 to F.G.. Thanks to A. Dobosz and S. Carr for assistance with developing the fragmentation and central sectioning method, respectively. Particular thanks to P. Jones and G. Poirer for microprobe assistance. S. Chakraborty is greatly appreciated for comments and discussion on an early form of this manuscript that greatly improved its presentation. We would also like to thank two anonymous reviewers for critical and constructive reviews that significantly contributed to the presentation of this work. J. Hoefs is thanked for editorial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. George.

Additional information

Communicated by Jochen Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 131 kb)

Supplementary material 1 (PDF 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, F.R., Gaidies, F. Characterisation of a garnet population from the Sikkim Himalaya: insights into the rates and mechanisms of porphyroblast crystallisation. Contrib Mineral Petrol 172, 57 (2017). https://doi.org/10.1007/s00410-017-1372-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1372-y

Keywords

Navigation