Skip to main content
Log in

Weathering crusts on peridotite

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Chemical weathering of dark-green massive peridotite, including partly serpentinized peridotite, produces a distinct and remarkable brown weathering rind when exposed to the atmosphere long enough. The structure and mineral composition of crusts on rocks from the Ronda peridotite, Spain, have been studied in some detail. The generic overall weathering reaction serpentinized peridotite + rainwater = weathering rind + runoff water describes the crust-forming process. This hydration reaction depends on water supply from the outcrop surface to the reaction front separating green peridotite from the brown crust. The reaction pauses after drying and resumes at the front after wetting. The overall net reaction transforms olivine to serpentine in a volume-conserving replacement reaction. The crust formation can be viewed as secondary serpentinization of peridotite that has been strongly altered by primary hydrothermal serpentinization. The reaction stoichiometry of the crust-related serpentinization is preserved and reflected by the composition of runoff waters in the peridotite massif. The brown color of the rind is caused by amorphous Fe(III) hydroxide, a side product from the oxidation of Fe(II) released by the dissolution of fayalite component in olivine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alonso-Chaves FM, Soto JI, Orozco M, Kilias AA, Tranos MD (2004) Tectonic evolution of the betic cordillera: an overwiew. Bull Geol Soc Greece 36:1598–1607

    Google Scholar 

  • Barnes I, O’Neil JR (1971) The relationship between fluids in some fresh Alpine-type ultramafics and possible modern serpentinization, Western United States. Bull Geol Soc Am 80:1947–1960

    Article  Google Scholar 

  • Barnes I, O’Neil JR, Trescases JJ (1978) Present day serpentinization in New Caledonia, Oman and Yugoslavia. Geochim Cosmochim Acta 42(1):144–145

    Article  Google Scholar 

  • Boev B, Jovanovski G, Makreski P (2009) Minerals from Macedonia. XX. Geological setting, lithologies, and identification of the minerals from Ržanovo Fe-Ni deposit. Turk J Earth Sci 18:631–652

    Google Scholar 

  • Bucher K (1998) Growth mechanisms of metasomatic reaction veins in dolomite marbles from the Bergell Alps. Mineral Petrol 63:151–171

    Article  Google Scholar 

  • Bucher K (2012) Progress of weathering reactions in ultramafic rocks. Goldschmidt 2012 conference abstracts, minerological magzine, p 1523

  • Bucher K, Grapes R (2011) Petrogenesis of metamorphic rocks. Springer, Berlin, p 428

    Book  Google Scholar 

  • Bucher-Nurminen K (1981) The formation of metasomatic reaction veins in dolomitic marble roof pendants in the Bergell intrusion (Province Sondrio, Northern Italy). Am J Sci 281:1197–1222

    Article  Google Scholar 

  • Bucher-Nurminen K (1991) Mantle fragments in the Scandinavian Caledonides. Tectonophysics 190:173–192

    Article  Google Scholar 

  • Carlson WD, Johnson CD (1991) Coronal reaction textures in garnet amphibolites of the Llano Uplift. Am Miner 76:756–772

    Google Scholar 

  • Carmichael D (1968) On the mechanism of prograde metamorphic reactions in quartz-bearing pelitic rocks. Contrib Miner Petrol 20:244–267

    Article  Google Scholar 

  • Colombo C, Violante A (1997) Effect of ageing on the nature and interlayering of mixed hydroxy A1–Fe-montmorillonite complexes. Clay Miner 32:55–64

    Article  Google Scholar 

  • Dikey JS, Lundeen MT, Obata M (1979) Geologic map of the ultramafic complex, southern Spain. In: Geological society of America map and chart series MC-29. Geological Society of America, Boulder, pp 1–4

  • Dixon JC, Thorn CE, Darmody RG, Campbell SW (2002) Weathering rinds and rock coatings from an Arctic alpine environment, northern Scandinavia. Geol Soc Am Bull 114:226–238

    Article  Google Scholar 

  • Durocher JL, Schindler M (2011) Iron-hydroxide, iron-sulfate and hydrous/silica coatings in acid-mine tailings facilities A comparative study of their trace-element composition. Appl Geochem 26:1337–1354

    Article  Google Scholar 

  • Edwards AB (1938) The formation of iddingsite. Am Miner 23:277–281

    Google Scholar 

  • Evans BW (2008) Control of the products of serpentinization by the Fe2+Mg-1 exchange potential of olivine and orthopyroxene. J Petrol 49:1873–1887

    Article  Google Scholar 

  • Evans KA, Powell R, Frost BR (2013) Using equilibrium thermodynamics in the study of metasomatic alteration, illustrated by an application to serpentinites. Lithos 168–169:67–84

    Article  Google Scholar 

  • Evzerov V, Pripachkin P, Dudkin K (2007) Linear weathering crust of the Fedorova-Pana layered complex in the northeastern Baltic Shield. Dokl Earth Sci 413(1):170–172

    Article  Google Scholar 

  • Fischer WR, Schwertmann U (1975) The formation of hematite from amorphous iron(III) hydroxide. Clays Clay Miner 23:33–37

    Article  Google Scholar 

  • Fritz B, Clément A, Amal Y, Noguera C (2009) Simulation of the nucleation and growth of simple clay minerals in weathering processes: the NANOKIN Code. Geochimica et Cosmochim Acta 73:1340–1358

    Article  Google Scholar 

  • Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48:1351–1368

    Article  Google Scholar 

  • Geroni JN, Sapsford DJ (2011) Kinetics of iron (II) oxidation determined in the field. Appl Geochem 26:1452–1457

    Article  Google Scholar 

  • Jin L, Rother G, Cole DR, Mildner DFR, Duffy CJ, Brantley SL (2011) Characterization of deep weathering and nanoporosity develepment in shale—a neutron study. Am Miner 96(4):498–512

    Article  Google Scholar 

  • Lasaga AC (1984) Chemical kinetics of water–rock interactions. J Geophys Res 89(B6):4009–4025

    Article  Google Scholar 

  • Lasaga AC, Soler JM, Ganor J, Burch TE, Nagy KL (1994) Chemical weathering rate laws and global geochemical cycles. Geochim Cosmochim Acta 58:2361–2386

    Article  Google Scholar 

  • Lauder WR (1965) The geology of Dun Mountain, Nelson, new Zealand part 2—the petrology, structure, and origin of the ultrabasic rocks. NZ J Geol Geophys 8(1):475–504

    Article  Google Scholar 

  • Lelong F, Tardy Y, Grandin G, Trescases JJ (1976) Pedogenesis, chemical weathering and processes of formation of some supergene ore deposits. In: Wolf KL (ed) Handbook of strata-bound and stratiform ore deposits, vol 3. Elsevier, Amsterdam, pp 93–173

  • Lindahl I, Nilsson LP (2008) Geology of the soapstone deposits of the Linnajavri area, Hamarøy, Nordland, north Norwegian Caledonides—Norway’s largest reserves of soapstone. In: Slagstad T (ed) Geology for society, Geological survey of Norway Special Publication, vol 11, pp 19–35

  • Martinez R, Weber S, Bucher K (2014) Quantifying the kinetics of olivine dissolution in partially closed and closed batch reactor systems. Chem Geol 367:1–12

    Article  Google Scholar 

  • Mazzoli S, Martin Algarra A (2011) Deforrmation partitioning during transpressional emplacement of a ‘mantle extrusion wedge’: the Ronda peridotites, western Betic Cordillera, Spain. J Geol Soc 168:373–382

    Article  Google Scholar 

  • Mumpton FA, Thompson CS (1966) The stability of brucite in the weathering zone of the New Idria serpentinite. In: Fourteenth national conference on clays and clay minerals, Berkeley, CA, USA, pp 249–257

  • Nikić Z, Srećković-Batoćanin D, Burazer M, Ristić R (2013) A conceptual model of mildly alkaline water discharging from the Zlatibor ultramafic massif, western Serbia. Hydrogeol J 21:1147–1163

    Article  Google Scholar 

  • Nilsson LP, Roberts D, Ramsay DM (2005) The Raudfjellet ophiolite fragment, Central Norwegian Caledonides: principal lithological and structural features. Geol Soc Bull 445:101–117

    Google Scholar 

  • Obata M (1980) The Ronda Peridotite: Garnet–, Spinel–, and Plagioclase-Lherzolite Facies and the P-T Trajectories of a high-temperature mantle intrusion. J Petrol 21:533–572

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batchreaction, one dimensional transport, and inverse geochemical calculations. In: Water-resources investigations report 99-4259, U.S. Geological Survey, Denver, pp 312

  • Pouchou G, Pichior F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model of “PAP”. In: Heinrich KFJ, Newbiry DE (eds) Electron probe quantitation. Plenum Press, New York, pp 31–75

  • Rajan A, Mienert J, Bünz S (2012) Potential serpentinization, degassing, and gas hydrate formation at a young (<20 Ma) sedimented ocean crust of the Arctic Ocean ridge system. J Geophys Res 117(B3):1–14

    Google Scholar 

  • Sagapoa CV, Imai A, Watanabe K (2011) Laterization process of ultramafic rocks in Siruka, Solomon Islands. J Nov Carbon Resour Sci 3:32–39

    Google Scholar 

  • Schubert W (1977) Reaktionen im alpinotypen Peridotitmassiv von Ronda (Spanien) und seinen partiellen Schmelzprodukten. Contrib Miner Petrol 62:205–220

    Article  Google Scholar 

  • Schubert W (1982) Comments on ‘The Ronda Peridotite: Garnet-, Spinel-, and Plagioclase-Lherzolite Facies and the PT trajectories of a high-temperature mantle intrusion’ by M. Obata (J Petrol 21:533–572, 1980). J Petrol 23:293–295

  • Schwertmann U, Fischer WR (1973) Natural ‘amorphous’ ferric hydroxide. Geoderma 10:237–247

    Article  Google Scholar 

  • Silantyev SA, Novoselov AA, Krasnova EA, Portnyagin MV, Hauff F, Werner R (2012) Silicification of peridotites at the stalemate fracture zone (Northwestern Pacific): reconstruction of the conditions of low-temperature weathering and tectonic interpretation. Petrology 20:21–39

    Article  Google Scholar 

  • Smith KL, Milnes AR, Eggleton RA (1987) Weathering of basalt: formation of iddingsite. Clays Clay Miner 35:418–428

    Article  Google Scholar 

  • Stober I, Bucher K (2015) Hydraulic conductivity of fractured upper crust: insights from hydraulic tests in boreholes and fluid-rock interaction in crystalline basement rocks. Geofluids 15:161–178

    Article  Google Scholar 

  • van Brakel J (1975) Capillary liquid transport in porous media. Doctoral dissertation (unpublished), Technical University of Delft, Netherlands, pp 154

  • Van der Wal D, Vissers LM (1996) Structural petrology of the Ronda Peridotite, SW Spain: deformation history. J Petrol 37:23–43

    Article  Google Scholar 

  • Weisenberger T, Bucher K (2011) Mass transfer and porosity evolution during low temperature water–rock interaction in gneisses of the Simano nappe: Arvigo, Val Calanca, Swiss Alps. Contrib Miner Petrol 162:61–81

    Article  Google Scholar 

  • Wogelius RA, Walther JV (1991) Olivine dissolution at 25°C: effects of pH, CO2 and organic acids. Geochim Cosmochim Acta 55(4):943–954

    Article  Google Scholar 

  • Xu T, Sonnenthal E, Spycher N, Pruess K (2006) TOUGHREACT—a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput Geosci 132:145–165

    Article  Google Scholar 

  • Yoshida H, Metcalfe R, Nishimoto S, Yamamoto H (2011) Weathering rind formation in buried terrace cobbles during periods of up to 300ka. Appl Geochem 26:1706–1721

    Article  Google Scholar 

Download references

Acknowledgments

Antonio Carcia-Casco from the University of Granada provided precise information on the localities of garnet peridotite in the Ronda massif. His responsive help is gratefully acknowledged. Careful reviews by Bernard Evans, Ralf Milke, and an anonymous reviewer are appreciated. We also thank Chris Ballhaus for his mindful editorial handling of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Bucher.

Additional information

Communicated by Chris Ballhaus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucher, K., Stober, I. & Müller-Sigmund, H. Weathering crusts on peridotite. Contrib Mineral Petrol 169, 52 (2015). https://doi.org/10.1007/s00410-015-1146-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1146-3

Keywords

Navigation