Skip to main content

Advertisement

Log in

Crystal structure, thermal expansivity, and elasticity of OH-chondrodite: trends among dense hydrous magnesium silicates

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We report the structure and thermoelastic properties of OH-chondrodite. The sample was synthesized at 12 GPa and 1523 K, coexisting with hydroxyl-clinohumite and hydrous olivine. The Fe content Fe/(Fe + Mg) is 1.1 mol%, and the monoclinic unit-cell parameters are as follows: a = 4.7459(2) Å, b = 10.3480(7) Å, c = 7.9002(6) Å, α = 108.702(7)°, and V = 367.50(4) Å3. At ambient conditions, the crystal structure was refined in space group P21/b from 1915 unique reflection intensities measured by single-crystal X-ray diffraction. The volume thermal expansion coefficient was measured between 150 and 800 K, resulting in α V  = 2.8(5) × 10−9 (K−2) × T + 40.9(7) × 10−6 (K−1) − 0.81(3) (K)/T 2, with an average value of 38.0(9) × 10−6 (K−1). Brillouin spectroscopy was used to measure a set of acoustic velocities from which all 13 components (C ij ) of the elastic tensor were determined. The Voigt–Reuss–Hill average of the moduli yields for the adiabatic bulk modulus, K S0 = 117.9(12) GPa, and for shear modulus, G 0 = 70.1(5) GPa. The Reuss bound on the isothermal bulk modulus (K T0) is 114.2(14) GPa. From the measured thermodynamic properties, the Grüneisen parameter (γ) is calculated to be 1.66(4). Fitting previous static compression data using our independently measured bulk modulus (isothermal Reuss bound) as a fixed parameter, we refined the first pressure derivative of the bulk modulus, K T′ = 5.5(1). Systematic trends between H2O content and physical properties are evaluated among dense hydrous magnesium silicate phases along the forsterite–brucite join.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angel RJ, Frost DJ, Ross NL, Hemley RJ (2001) Stabilities and equations of state of dense hydrous magnesium silicates. Phys Earth Planet Int 127:181–196

    Article  Google Scholar 

  • Barron THK, Collins JG, White GK (1980) Thermal expansion of solids at low temperatures. Adv Phys 29:609–730

    Article  Google Scholar 

  • Berry AJ, James M (2001) Refinement of hydrogen positions in synthetic hydroxyl-clinohumite by powder neutron diffraction. Am Mineral 86:181–184

    Google Scholar 

  • Berry AJ, James M (2006) Refinement of hydrogen positions in natural chondrodite by powder neutron diffraction: implications for the stability of humite minerals. Miner Mag 66:441–449

    Article  Google Scholar 

  • Burnley PC, Navrotsky A (1996) Synthesis of high-pressure hydrous magnesium silicates: observations and analysis. Am Mineral 81:317–326

    Google Scholar 

  • Cliffe MJ, Goodwin AL (2012) PASCal: a principal-axis strain calculator for thermal expansion and compressibility for thermal expansion and compressibility determination. J Appl Crystallogr 45:1321–1329

    Article  Google Scholar 

  • Crichton WA, Ross NL (2002) Equation of state of dense hydrous magnesium silicate Phase A, Mg7Si2O8(OH)6. Am Mineral 87:333–338

    Google Scholar 

  • Cynn H, Hofmeister AM, Burney PC, Navrotsky A (1996) Thermodynamic properties and hydrogen speciation from vibrational spectra of dense hydrous magnesium silicates. Phys Chem Miner 23:361–376

    Article  Google Scholar 

  • Downs RT, Bartelmehs KL, Gibbs GV, Boisen MB (1993) Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. Am Mineral 78:1104–1107

    Google Scholar 

  • Engi M, Lindsley DH (1980) Stability of titanian clinohumite: experiments and thermodynamic analysis. Contrib Mineral Petrol 72:1935–1938

    Google Scholar 

  • Evans BW, Trommsdorff V (1983) Fluorine hydroxyl titanian clinohumite in alpine recrystallized garnet peridotite: compositional controls and petrologic significance. Am J Sci 283:355–369

    Google Scholar 

  • Every AG (1980) General closed-form expressions for acoustic waves in elastically anisotropic solids. Phys Rev B 22:1746–1760

    Article  Google Scholar 

  • Farrugia LJ (2012) WinGX and ORTEP for Windows:an update. J Appl Cryst 45:849–854

    Article  Google Scholar 

  • Faust J, Knittle E (1994) Static compression of chondrodite: implications for water in the upper mantle 21. Geophys Res Lett 21(18):1935–1938

    Article  Google Scholar 

  • Fei Y (1995) Thermal expansion. In: Ahrens JT (ed) Mineral physics and crystallography, vol 2. AGU Ref. Shelf, pp 29–44

  • Friedrich A, Lager GA, Kunz M, Chakoumakos BC, Smyth JR, Schultz AJ (2001) Temperature-dependent single-crystal neutron diffraction study of natural chondrodite and clinohumite. Am Mineral 86:981–989

    Google Scholar 

  • Friedrich A, Lager GA, Ulmer P, Kunz M, Marshall WG (2002) High-pressure single-crystal X-ray and powder neutron study of F, OH/OD-chondrodite: compressibility, structure, and hydrogen bonding. Am Mineral 87:931–939

    Google Scholar 

  • Fritzel TLB, Bass JD (1997) Sound velocities of clinohumite, and implications for water in Earth’s upper mantle. Geophys Res Lett 24(9):1023–1026

    Article  Google Scholar 

  • Fujino K, Takéuchi Y (1978) Crystal chemistry of titanian chondrodite and titanian clinohumite of high-pressure origin. Am Mineral 63:535–543

    Google Scholar 

  • Fukui T, Ohtaka O, Suziki T, Funakoshi K (2003) Thermal expansion of Mg(OH)2 brucite under high pressure and pressure dependence of entropy. Phys Chem Miner 30:511–516

    Article  Google Scholar 

  • Gibbs GV, Ribbe PH, Anderson CP (1970) The crystal structure of the humite minerals. II. Chondrodite. Am Mineral 55:1182–1194

    Google Scholar 

  • Gillet P (1991) High-temperature thermodynamic properties of forsterite. J Geophys Res 96(B7):11805–11816

    Article  Google Scholar 

  • Holl CM, Smyth JR, Manghnani MH, Amulele GM, Sekar M, Frost DJ, Prakapenka VB, Shen G (2006) Crystal structure and compression of an iron-bearing Phase A to 33 GPa. Phys Chem Miner 33:192–199

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorphic Geol 16:309–343

    Article  Google Scholar 

  • Irifune T, Kubo N, Isshiki M, Yamasaki Y (1998) Phase transformations in serpentine and transportation of water into the lower mantle. Geophys Res Lett 25(2):203–206

    Article  Google Scholar 

  • Jacobsen SD, Jiang F, Mao Z, Duffy TS, Smyth JR, Holl CM, Frost DJ (2008) Effects of hydration on the elastic properties of olivine. Geophys Res Lett 35:L14303

    Article  Google Scholar 

  • Jacobsen SD, Jiang F, Mao Z, Duffy TS, Smyth JR, Holl CM, Frost DJ (2009) Correction to “Effects of hydration on the elastic properties of olivine”. Geophys Res Lett 36:L12302

    Article  Google Scholar 

  • Jiang F, Speziale S, Duffy TS (2006) Single-crystal elasticity of brucite, Mg(OH)2, to 15 GPa by Brillouin scattering. Am Mineral 91:1893–1900

    Article  Google Scholar 

  • Kanzaki M (1991) Stability of hydrous magnesium silicate in the mantle transition zone. Phys Earth Planet Inter 66:307–312

    Article  Google Scholar 

  • Kawamoto T (2006) Hydrous phases and water transport in the subducting Slab. Reviews Mineral Geochem 62:273–289

    Article  Google Scholar 

  • Khodyrev OY, Agoshkow VM, Slutsky AB (1992) The system peridotite-aqueous fluid at upper mantle parameters. Trans Dokl USSR Acad Sci: Earth Sci Sect 312:255–258

    Google Scholar 

  • Komabayashi T, Omori S (2006) Internally consistent thermodynamic data set for dense hydrous magnesium silicates up to 35 GPa, 1600 & #xB0;C: implications for water circulation in the Earth’s deep mantle. Phys Earth Planet Int 156:89–107

    Article  Google Scholar 

  • Kroll H, Kirfel A, Heinemann R, Barbier B (2012) Volume thermal expansion and related thermophysical parameters in the Mg, Fe olivine solid-solution series. Eur J Mineral 24:935–956

    Article  Google Scholar 

  • Kumar M (1995) High pressure equation of state for solids. Phys B 212:391–394

    Article  Google Scholar 

  • Kumar M (1996) Application of high pressure equation of state for different classes of solids. Phys B 217:143–148

    Article  Google Scholar 

  • Kumar M (2003) Thermoelastic properties of minerals. Phys Chem Minerals 30:556–558

    Article  Google Scholar 

  • Kunz M, Lager GA, Burgi HB, Fernandez-Diaz MT (2006) High-temperature single-crystal neutron diffraction study of natural chondrodite. Phys Chem Miner 33:17–27

    Article  Google Scholar 

  • Kuribayashi T, Kagi H, Tanaka M, Akizuki M, Kudoh Y (2004) High-pressure single crystal X-ray diffraction and FT-IR observation of natural chondrodite and synthetic OH-chondrodite. J Miner Petrol Sci 99:118–129

    Article  Google Scholar 

  • Kuribayashi T, Tanaka M, Kudoh Y (2008) Synchrotron X-ray analysis of norbergite, Mg2.98Fe0.01Ti0.02Si0.99O4(OH0.31F1.69) structure at high pressure up to 8.2 GPa. Phys Chem Miner 35:559–568

    Article  Google Scholar 

  • Lin C-C, Liu L-G, Irifune T (1999) High-pressure Raman spectroscopic study of chondrodite. Phys Chem Miner 26(3):226–233

    Article  Google Scholar 

  • Liu W, Li B (2006) Thermal equation of state of (Mg0.9Fe0.1)2SiO4 olivine. Phys Earth Planet Int 157:188–195

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–259

    Article  Google Scholar 

  • McGetchin TR, Silver LT, Chodos AA (1970) Titanoclinohumite: a possible mineralogical site for water in the upper mantle. J Geophys Res 75:255–259

    Article  Google Scholar 

  • Mernagh TP, Liu L-G, Lin C-C (1999) Raman spectra of chondrodite at various temperatures. J Raman Spect 30:963–969

    Article  Google Scholar 

  • Ohtani E, Mizobata H, Yurimoto H (2000) Stability of dense hydrous magnesium silicate phases in the systems Mg2SiO4–H2O and MgSiO3–H2O at pressures up to 27 GPa. Phys Chem Miner 27:533–544

    Article  Google Scholar 

  • Ottolini L, Cámara F, Bigi S (2000) An investigation of matrix effects in the analysis of fluorine in humite-group minerals by EMPA, SIMS, and SREF. Am Mineral 85:89–102

    Google Scholar 

  • Pawley AR, Redfern SAT, Wood BJ (1995) Thermal expansivities and compressibilites of hydrous phases in the system MgO–SiO2–H2O: talc, phase A and 10-Å phase. Contrib Mineral Petrol 122:301–307

    Article  Google Scholar 

  • Phan HT (2009) Elastic properties of hydrous phases in the deep mantle: high-pressure ultrasonic wave velocity measurements on clinohumite and Phase A (dissertation). ETH Zürich, No: 18091, p 125

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical recipes in C: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1973) The crystal structure of the humite minerals IV. Clinohumite and titanoclinohumite. Am Mineral 58:43–49

    Google Scholar 

  • Ross NL, Crichton WA (2001) Compression of synthetic hydroxylclinohumite [Mg9Si4O16(OH)2] and hydroxylchondrodite [Mg5Si2O8(OH)2]. Am Mineral 86:990–996

    Google Scholar 

  • Sanchez-Valle C, Sinogeikin SV, Smyth JR, Bass JD (2006) Single-crystal elastic properties of dense hydrous magnesium silicate phase A. Am Mineral 91:961–964

    Article  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Cryst. A. 64:112–122

    Article  Google Scholar 

  • Shen T, Hermann J, Zhang L, Padron-Navarta JA, Chen J (2014) FTIR spectroscopy of Ti-chondrodite, Ti–clinohumite, and olivine in deeply subducted serpentinites and implications for the deep water cycle. Contrib Mineral Petrol. doi:10.1007/s00410-014-0992-8

    Google Scholar 

  • Shieh SR, Mao H-K, Hemley RJ, Ming LC (2000) In situ X-ray diffraction studies of dense hydrous magnesium silicates at mantle conditions. Earth Planet Sci Lett 177:69–80

    Article  Google Scholar 

  • Shimizu H (1995) High-pressure Brillouin scattering of molecular single-crystals grown in a diamond-anvil cell. In: Senoo M, Suito K, Kobayashi T, Kubota H (eds) High Press Res Solid. Elsevier, Netherlands, pp 1–17

    Google Scholar 

  • Sinogeikin SV, Bass JD (1999) Single-crystal elastic properties of chondrodite: implications for water in the upper mantle. Phys Chem Miner 26:297–303

    Article  Google Scholar 

  • Smyth JR, Frost DJ, Nestola F, Holl CM, Bromiley C (2006) Olivine hydration in the deep upper mantle: effects of temperature and silica activity. Geophys Res Lett 33:L15301

    Article  Google Scholar 

  • Speziale S, Duffy TS (2002) Single-crystal elastic constants of fluorite (CaF2) to 9.3 GPa. Phys Chem Miner 29:465–472

    Article  Google Scholar 

  • Speziale S, Marquardt H, Duffy TS (2014) Brillouin scattering and its application in geosciences. In: Henderson GS, Neuville DR, Downs RT (eds) Spectroscopic methods in mineralology and materials sciences, vol 78. Mineralogical Society America, Chantilly, pp 543–603

    Google Scholar 

  • Suzuki I (1975) Thermal expansion of periclase and olivine, and their anharmonic properties. J Phys Earth 23:145–149

    Article  Google Scholar 

  • Suzuki I, Oajima S, Seya K (1979) Thermal expansion of single-crystal manganosite. J Phys Earth 27:63–69

    Article  Google Scholar 

  • Suzuki I, Anderson OL, Sumino Y (1983) Elastic properties of a single-crystal forsterite Mg2SiO4, up to 1200 K. Phys Chem Miner 10:38–46

    Article  Google Scholar 

  • Taskaev VI, Ilupin IP (1990) Association of clinohumite and K-richterite in the kimberlite of Kollektivnaya pipe. Doklady Akademii Natsional’naya USSR 310(3):683–686

    Google Scholar 

  • Trots DM, Kurnosov A, Boffa Ballaran T, Frost DJ (2012) High-temperature structural behaviors of anhydrous wadsleyite and forsterite. Am Mineral 97:1582–1590

    Article  Google Scholar 

  • Watt JP (1980) HashinShtrikman bounds on the effective elastic moduli of polycrystals with monoclinic symmetry. J Appl Phys. doi:10.1063/1.327803

    Google Scholar 

  • Webb SL (1989) The elasticity of the upper mantle orthosilicates olivine and garnet to 3 GPa. Phys Chem Miner 16:684–692

    Article  Google Scholar 

  • Wunder B (1998) Equilibrium experiments in the system MgO–SiO2–H2O (MSH): stability fields of clinohumite–OH [Mg9Si4O16(OH)2], chondrodite–OH [Mg5Si2O8(OH)2] and phase A [Mg7Si2O8(OH)6]. Contrib Mineral Petrol 132:111–120

    Article  Google Scholar 

  • Wunder B, Medenbach O, Daniels P, Schreyer W (1995) First synthesis of the hydroxyl end-member of humite, Mg2Si3O12(OH)2. Am Mineral 80:638–640

    Google Scholar 

  • Xia X, Weidner DJ, Zhao H (1998) Equation of state of brucite: single-crystal Brillouin spectroscopy study and polycrystalline pressure–volume–temperature measurements. Am Mineral 83:68–74

    Google Scholar 

  • Yamamoto K (1977) The crystal structure of hydroxyl-chondrodite. Acta Crystallogr B 33:1481–1485

    Article  Google Scholar 

  • Ye Y, Schwering RA, Smyth JR (2009) Effects of hydration on thermal expansion of forsterite, wadsleyite, and ringwoodite at ambient pressure. Am Mineral 94:899–904

    Article  Google Scholar 

  • Ye Y, Smyth JR, Jacobsen SD, Goujon C (2013) Crystal chemistry, thermal expansion, and Raman spectra of hydroxyl-clinohumite: implications for water in Earth’s interior. Contrib Mineral Petrol 165:563–574

    Article  Google Scholar 

  • Zha C-S, Duffy TS, Downs RT, Mao H-K, Hemley RJ (1996) Sound velocity and elasticity of single-crystal forsterite to 16 GPa. J Geophys Res 101(B8):17535–17545

    Article  Google Scholar 

  • Zha C-S, Duffy TS, Downs RT, Mao H-K, Hemley RJ (1998) Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa. Earth Planet Sci Lett 279:11–19

    Google Scholar 

Download references

Acknowledgments

This work was supported by US NSF grants EAR-1452344 (SDJ), EAR-1113369 (JRS), and EAR-114854 (TSD). SDJ also acknowledges support from the Carnegie/DOE Alliance Center (CDAC), and the David and Lucile Packard Foundation. Synthesis was performed at Bayerisches Geoinstitut, University of Bayreuth, Germany, and supported in part by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Ye.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (CIF 27 kb)

Appendices

Appendix 1

See Table 10.

Table 10 Anisotropic displacement parameters (Å2)

Appendix 2

See Table 11.

Table 11 Unit-cell parameters of chondrodite as functions of temperature, as well as the principle expansion axes, which are normalized to the ones at 153 K

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Jacobsen, S.D., Mao, Z. et al. Crystal structure, thermal expansivity, and elasticity of OH-chondrodite: trends among dense hydrous magnesium silicates. Contrib Mineral Petrol 169, 43 (2015). https://doi.org/10.1007/s00410-015-1138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1138-3

Keywords

Navigation