Skip to main content
Log in

Deciphering petrogenic processes using Pb isotope ratios from time-series samples at Bezymianny and Klyuchevskoy volcanoes, Central Kamchatka Depression

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Klyuchevskoy group of volcanoes in the Kamchatka arc erupts compositionally diverse magmas (high-Mg basalts to dacites) over small spatial scales. New high-precision Pb isotope data from modern juvenile (1956–present) erupted products and hosted enclaves and xenoliths from Bezymianny volcano reveal that Bezymianny and Klyuchevskoy volcanoes, separated by only 9 km, undergo varying degrees of crustal processing through independent crustal columns. Lead isotope compositions of Klyuchevskoy basalts–basaltic andesites are more radiogenic than Bezymianny andesites (208Pb/204Pb = 37.850–37.903, 207Pb/204Pb = 15.468–15.480, and 206Pb/204Pb = 18.249–18.278 at Bezymianny; 208Pb/204Pb = 37.907–37.949, 207Pb/204Pb = 15.478–15.487, and 206Pb/204Pb = 18.289–18.305 at Klyuchevskoy). A mid-crustal xenolith with a crystallization pressure of 5.2 ± 0.6 kbars inferred from two-pyroxene geobarometry and basaltic andesite enclaves from Bezymianny record less radiogenic Pb isotope compositions than their host magmas. Hence, assimilation of such lithologies in the middle or lower crust can explain the Pb isotope data in Bezymianny andesites, although a component of magma mixing with less radiogenic mafic recharge magmas and possible mantle heterogeneity cannot be excluded. Lead isotope compositions for the Klyuchevskoy Group are less radiogenic than other arc segments (Karymsky—Eastern Volcanic Zone; Shiveluch—Northern Central Kamchatka Depression), which indicate increased lower-crustal assimilation beneath the Klyuchevskoy Group. Decadal timescale Pb isotope variations at Klyuchevskoy demonstrate rapid changes in the magnitude of assimilation at a volcanic center. Lead isotope data coupled with trace element data reflect the influence of crustal processes on magma compositions even in thin mafic volcanic arcs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abouchami W, Hofmann AW, Galer SJG, Frey FA, Eisele J, Feigenson M (2005) Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature 434:851–856

    Article  Google Scholar 

  • Albarède F, Télouk P, Blichert-Toft J, Boyet M, Agranier A, Nelson BK (2004) Precise and accurate isotopic measurements using multiple-collector ICPMS. Geochim Cosmichim Acta 68:2725–2744

    Article  Google Scholar 

  • Almeev RR (2005) Geochemistry of Bezymianny volcano: evidence for mantle source and insights on fractionating parameters of the parental magmas, Ph.D Dissertation, Moscow State University, 238 pp (In Russian)

  • Almeev RR, Kimura J, Ariskin AA, Ozerov AY (2013a) Decoding crystal fractionation in calc-alkaline magmas from the Bezymianny Volcano (Kamchatka, Russia) using mineral and bulk rock compositions. J Volcanol Geotherm Res. doi:10.1016/j.jbolgeores.2013.01003

  • Almeev RR, Holtz F, Ariskin AA, Kimura J (2013b) Storage conditions of Bezymianny parental magmas: results of phase equilibria experiments at 100 and 700 MPa. Contrib Mineral Petrol 166:1389–1414

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539

    Article  Google Scholar 

  • Anosov GI, Bikkenina SK, Popov AA (1978) Glubinnoe seismicheskoe zondirovanie Kamchatki (Deep Seismic Sounding of Kamchatka), Moscow: Nauka, 129 pp (In Russian)

  • Arevalo R Jr, McDonough WF (2010) Chemical variations and regional diversity observed in MORB. Chem Geol 271:70–85

    Article  Google Scholar 

  • Ariskin AA, Barmina GS, Ozerov AYu, Nielsen RL (1995) Genesis of high-alumina basalts from Klyuchevskoi volcano. Petrology 3:449–472

    Google Scholar 

  • Auer S, Bindeman I, Wallace P, Ponomareva V, Portnyagin M (2009) The origin of hydrous, high-δ18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia. Contrib Mineral Petrol 157:209–230

    Article  Google Scholar 

  • Balesta ST (1991) Earth crust structure and magma chambers of the areas of present Kamchatka volcanism. In: Fedotov SA, Masurenkov YP, Balesta ST (eds) Active volcanoes of Kamchatka. Nauka, Moscow, pp 36–45

    Google Scholar 

  • Belousov AB, Belousova MG, Zhdanova EYu (1996) Northern group of Kamchatkan volcanoes: activity in 1990–1992. J Volcanol Seismol 18:161–170

    Google Scholar 

  • Belousov A, Voight B, Belousova M, Petukhin A (2002) Pyroclastic surges and flows from the 8–10 May 1997 explosive eruption of Bezymianny volcano, Kamchatka, Russia. Bull Volcanol 64:455–471

    Article  Google Scholar 

  • Bindeman I, Vinogradov VI, Valley JW, Wooden JL, Natal’in BA (2002) Archean protolith and accretion of crust in Kamchatka: SHRIMP dating of zircons from Sredinny and Ganal Massifs. J Geol 110:271–289

    Article  Google Scholar 

  • Bindeman IN, Ponomareva V, Bailey JC, Valley JW (2004) Volcanic arc of Kamchatka: a province with high-δ18O magma sources and large-scale 18O/16O depletion of the upper crust. Geochim Cosmichim Acta 68(4):841–865

    Article  Google Scholar 

  • Blichert-Toft J, Weis D, Maerschalk C, Agranier A, Albarède F (2003) Hawaiian hot spot dynamics as inferred from the Hf and Pb isotope evolution of Mauna Kea volcano. Geochem Geophys Geosyst 4. doi:10.1029/2002GC000340

  • Bogoyavlenskaya GY, Braitseva OA, Melekestsev IV, Maksimov AP, Ivanov BV (1991) Bezymianny volcano. In: Fedotov SA, Masurenkob YP (eds) Active volcanoes of Kamchatka. Nauka, Moscow, pp 168–197

    Google Scholar 

  • Bowen NL (1928) The evolution of igneous rocks. Princeton University Press, Princeton

  • Braitseva OA, Melekestsev IV, Bogoyavlenskaya GE, Maksimov AP (1991) Bezymianny: eruptive history and dynamics. J Volcanol Seismol 12:165–194

    Google Scholar 

  • Braitseva OA, Melekestsev IV, Ponomareva VV, Sulerzhitsky LD (1995) The ages of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region, Russia. Bull Volcanol 57:383–402

    Google Scholar 

  • Brenan JM, Shaw HF, Phinney DL, Ryerson FJ (1994) Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletions in island-arc basalts. Earth Planet Sci Lett 128:327–339

    Article  Google Scholar 

  • Brunelli D, Seyler M (2010) Asthenospheric percolation of alkaline melts beneath the St. Paul region (Central Atlantic Ocean). Earth Planet Sci Lett 289:393–405

    Article  Google Scholar 

  • Chiaradia M, Müntener O, Beate B, Fontignie DA (2009) Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling. Contrib Mineral Petrol 158:563–588

    Article  Google Scholar 

  • Churikova T, Dorendorf F, Wörner G (2001) Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. J Petrol 42(8):1567–1593

    Article  Google Scholar 

  • Churikova TG, Gordeychik BN, Wörner G, Ivanov BV (2011) Variable fluids and mantle sources documented in the geochemistry of Kamen volcano and the Klyuchevskaya volcanic group. Japan Kamchatka Aleutian Subduction Processes Meeting Abstracts

  • Daly RA (1933) Igneous rocks and their origin. McGraw Hill, New York

  • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35:787–790

    Article  Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  Google Scholar 

  • Dorendorf F, Weichert U, Wörner G (2000) Hydrated sub-arc mantle: a source for the Klyuchevskoy volcano, Kamchatka/Russia. Earth Planet Sci Lett 175:69–86

    Article  Google Scholar 

  • Dosseto A, Bourdon B, Joron J, Dupre B (2003) U–Th–Pa–Ra study of the Kamchatka arc: new constraints on the genesis of arc lavas. Geochim Cosmichim Acta 67:2857–2877

    Article  Google Scholar 

  • Dufek J, Bergantz GW (2005) Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt–crust interaction. J Petrol 142:113–132

    Google Scholar 

  • Duggen S, Portnyagin M, Baker J, Ulfbeck D, Hoernle K, Garbe-Schönberg D, Grassineau N (2007) Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchtkan subduction zone: evidence for the transition from slab surface dehydration to sediment melting. Geochim Cosmichim Acta 71:452–480

    Article  Google Scholar 

  • Dunn T, Sen C (1994) Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: a combined analytical and experimental study. Geochim Cosmichim Acta 58:717–733

    Article  Google Scholar 

  • Ewart A, Griffin WL (1994) Application of proton-microprobe data to trace-element partitioning in volcanic-rocks. Chem Geol 117:251–284

    Article  Google Scholar 

  • Fedotov SA, Masurenkov YP, Balesta ST (eds) (1991) Active volcanoes of Kamchatka. Nauka, Moscow

    Google Scholar 

  • Fedotov SA, Zharinov NA, Gontovaya LI (2010) The magmatic system of the Klyuchevskaya Group of volcanoes inferred from data on its eruptions, earthquakes, deformation, and deep structure. J Volcanol Seismol 4:1–33

    Article  Google Scholar 

  • Gao S, Rudnick RL, Yuan H, Liu X, Liu Y, Xy W, Ling W, Ayers J, Wang X, Wang Q (2004) Recycling lower continental crust in the North China Craton. Nature 432:892–897

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpretation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Gorbatov A, Kostoglodov V, Suarez G, Gordeev E (1997) Seismicity and structure of the Kamchatka subduction zone. J Geophys Res 102:17883–17898

    Article  Google Scholar 

  • Grapenthin R, Freymueller JT, Serovetnikov SS (2013) Surface deformation of Bezymianny Volcano, Kamchatka, recorded by GPS: the eruptions from 2005 to 2010 and long-term, long-wavelength subsidence. J Volcanol Geotherm Res 263:58–74

    Article  Google Scholar 

  • Hart SR (1984) A large-scale anomaly in the Southern Hemisphere mantle. Nature 309:753–757

    Article  Google Scholar 

  • Hauri EH, Wagner TP, Grove TL (1994) Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117:149–166

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Hochstaedter AG, Kepezhinskas P, Defant M (1996) Insights into the volcanic arc mantle wedge from magnesian lavas from the Kamchatka arc. J Geophys Res 101(B1):697–712

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Article  Google Scholar 

  • Ishikawa T, Tera F, Nakazawa T (2001) Boron isotope and trace element systematics of the three volcanic zones in the Kamchatka arc. Geochim Cosmichim Acta 65(24):4523–4537

    Article  Google Scholar 

  • Izbekov PE, Neill OK, Shipman JS, Turner SJ, Shcherbakov VD, Plechov P (2010) Silicic enclaves in products of 2009-2010 eruptions of Bezymianny volcano, Kamchatka: Implications for magmatic processes. AGU Fall Meeting Supplemental Abstract

  • Johnson DM, Hooper PR, Conrey RM (1999) XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. Adv X Ray Anal 41:843–867

    Google Scholar 

  • Kamenov GD, Mueller PA, Perfit MR (2004) Optimization of mixed Pb–Tl solutions for high precision isotopic analyses by MC–ICP–MS. J Anal Atom Spectrom 19:1262–1267

    Article  Google Scholar 

  • Kelemen PB, Yogodzinski GM, Scholl DW (2003) Along strike variation in the Aleutian island arc: genesis of high-Mg# andesite and implications for continental crust. In: Eiler J (ed) Inside the subduction factory. Geophysical Monograph, American Geophysical Union, vol 138, pp 223–276

  • Kepezhinskas P, McDermott F, Defant MJ, Hochstaedter A, Drummond MS, Hawkesworth CJ, Koloskov A, Maury RC, Bellon H (1997) Trace element and Sr–Nd–Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim Cosmichim Acta 61(3):577–600

    Article  Google Scholar 

  • Kersting AB, Arculus RJ (1994) Klyuchevskoy volcano, Kamchatka, Russia: the role of high-flux recharged, tapped, and fractionated magma chamber(s) in the genesis of high-Al2O3 from high-MgO basalt. J Petrol 35:1–41

    Article  Google Scholar 

  • Kersting AB, Arculus RJ (1995) Pb isotope composition of Klyuchevskoy volcano, Kamchatka and North Pacific sediments: implications for magma genesis and crustal recycling in the Kamchatkan arc. Earth Planet Sci Lett 136:133–148

    Article  Google Scholar 

  • Khrenov AP, Dvigalo VN, Kirsanov IT, Fedotov SA, Gorel’chik VI, Zharinov NA (1991) Klyuchevskoy Volcano. In: Fedotov SA, Masurenkob YP (eds) Active volcanoes of Kamchatka. Nauka, Moscow, pp 106–153 (in Russian and English)

    Google Scholar 

  • Khubanaya SA, Sobolev AV (1998) Primary melts of calc-alkaline magnesian basalts from the Klyuchevskoi volcano, Kamchatka. Dokl Earth Sci 360:537–539

    Google Scholar 

  • Khubanaya SA, Bogoyavlenskiy SO, Novogorodtseva TA, Okrugina AI (1994) The mineralogy of the Klyuchevskoi magnesian basalts depicting the fractionation in the magma chamber. J Volcanol Seismol 3:315–338 (in Russian)

    Google Scholar 

  • Konstantinovskaia EA (2001) Arc-continent collision and subduction reversal in the Cenozoic evolution of the Northwest pacific: an example from Kamchatka (NE Russia). Tectonophysics 333:75–94

    Article  Google Scholar 

  • Koulakov I, Gordeev EI, Dobretsov NI, Vernikovsky VA, Sunyukov S, Jakovlev A, Jaxybulatov K (2013) Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography. J Volcanol Geotherm Res 263:75–91

    Article  Google Scholar 

  • Lees JM (2007) Seismic tomography of magmatic systems. J Volcanol Geotherm Res 167:37–56

    Article  Google Scholar 

  • Lees JM, VanDecar J, Gordeev E, Ozerov A, Brandon M, Park J, Levin V (2007) Three dimensional images of the Kamchatka-Pacific plate cusp. Kamchatka Geophys Monogr Seri Am Geophys Union 172:65–75

    Google Scholar 

  • Lopez T, Ushakov S, Izbekov P, Tassi F, Cahill C, Neill O, Werner C (2013) Constraints on magma processes, subsurface conditions, and total volatile flux at Bezymianny Volcano in 2007–2010 from direct and remote volcanic gas measurements. J Volcanol Geoth Res 263:92–107

    Article  Google Scholar 

  • Madureira P, Mata J, Mattielli N, Queiroz G, Silva P (2011) Mantle source heterogeneity, magma generation and magmatic evolution at Terceira Island (Azores archipelago): constraints from elemental and isotopic (Sr, Nd, Hf, and Pb) data. Lithos 126:402–418

    Article  Google Scholar 

  • Melekestsev IV, Khrenov AP, Kozhernyaka NN (1991) Tectonic position and general description of volcanoes of Northern group and Sredinny Range. In: Fedotov SA, Masurenkob YP (eds) Active volcanoes of Kamchatka. Nauka, Moscow, pp 74–81

    Google Scholar 

  • Miller DM, Goldstein SL, Langmuir CH (1994) Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368:514–519

    Article  Google Scholar 

  • Minster JB, Jordan TH (1978) Present-day plate motions. J Geophys Res 83:5331–5354

    Article  Google Scholar 

  • Mironov NL, Portnyagin MV (2011) H2O and CO2 in parental magmas of Kliuchevskoi volcano inferred from study of melt and fluid inclusions in olivine. Russ Geol Geophys 52:1353–1367

    Article  Google Scholar 

  • Mironov NL, Portnyagin MV, Pletchov PYu, Khubunaya SA (2001) Kamchatka: evidence from melt inclusions in minerals of high-alumina basalts. Petrology 9(1):46–62

    Google Scholar 

  • Münker C, Wörner G, Yogodzinski G, Churikova T (2004) Behaviour of high field strength elements in subduction zones: constraints from Kamchatka–Aleutian arc lavas. Earth Planet Sci Lett 224:275–293

    Article  Google Scholar 

  • Noll PD, Newsom HE, Leeman WP, Ryan JG (1996) The role of hydrothermal fluids in the production of subduction zone magmas: evidence from siderophile and chalcophile trace elements and boron. Geochim Cosmichim Acta 60:587–611

    Article  Google Scholar 

  • Ozerov AY (2000) The evolution of high-alumina basalts of the Klyuchevskoy volcano, Kamchatka, Russia, based on microprobe analyses of mineral inclusions. J Volcanol Geotherm Res 95:65–79

    Article  Google Scholar 

  • Ozerov AY, Ariskin AA, Kyle P, Bogoyavlenskaya GE, Karpenko SF (1997) Petrological–geochemical model for genetic relationships between basaltic and andesitic magmatism of Klyuchevskoi and Bezymyannyi volcanoes, Kamchatka. Petrology 5:550–569

    Google Scholar 

  • Ozerov AY, Firstov PP, Gavrilov VA (2007) Periodicities in the dynamics of eruptions of Klyuchevskoi volcano, Kamchatka. Kamchatka Geophys Monogr Ser Am Geophys Union 172:283–291

    Google Scholar 

  • Pineau F, Semet MP, Grassineau N, Okrugin VM, Javoy M (1999) The genesis of the stable isotope (O, H) record in arc magmas: the Kamchatka’s case. Chem Geol 135:93–124

    Article  Google Scholar 

  • Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944

    Article  Google Scholar 

  • Plechov PYu, Tsai AE, Shcherbakov VD, Dirksen OV (2008) Opacitization conditions of hornblende in Bezymyannyi volcano andesites (March 30, 1956 eruption). Petrology 16:19–35

    Article  Google Scholar 

  • Portnyagin M, Manea VC (2008) Mantle temperature control on composition of arc magmas along the Central Kamchatka Depression. Geology 36:519–522

    Article  Google Scholar 

  • Portnyagin MV, Ponomareva VV (2012) Kliuchevskoy volcano diary. Int J Earth Sci 101:195

    Article  Google Scholar 

  • Portnyagin M, Hoernle K, Avdeiko G, Hauff F, Werner R, Bindeman I, Uspensky V, Garbe-Schoenberg D (2005) Transition from arc to oceanic magmatism at the Kamchatka–Aleutian junction. Geology 33:25–28

    Article  Google Scholar 

  • Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S (2007a) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett 255:53–69

    Article  Google Scholar 

  • Portnyagin M, Bindeman I, Hoernle K, Hauff F (2007b) Geochemistry of primitive lavas of the Central Kamchatka Depression: magma generation at the edge of the Pacific Plate. Kamchatka Geophys Monogr Ser Am Geophys Union 172:199–239

    Google Scholar 

  • Portnyagin M, Mironov N, Ponomareva V, Bindeman I, Hauff F, Sobolev A, Kayzar T, Garbe-Schonberg D, Hoernle K (2011) Arc magmas from slab to eruption: the case of Kliuchevskoy volcano. Goldschmidt Conf Abstr 75:1661

    Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Petrol 69:61–120

    Article  Google Scholar 

  • Reagan MK, Sims KWW, Erich J, Thomas RB, Cheng H, Edwards RL, Laybe G, Ball L (2003) Time-scales of differentiation from mafic parents to rhyolite in North American continental arcs. J Petrol 44:1703–1726

    Article  Google Scholar 

  • Regelous M, Hofmann AW, Abouchami W, Galer SJG (2003) Geochemistry of lavas from the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. J Petrol 44:113–140

    Article  Google Scholar 

  • Reiners PW, Nelson BK, Ghiorso MS (1995) Assimilation of felsic crust by basaltic magma—thermal limits and extents of crustal contamination of mantle-derived magmas. Geology 23(6):563–566

    Article  Google Scholar 

  • Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Routledge, New York

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5. doi:10.1029/2003GC000597

  • Shcherbakov VD, Plechov PY, Izbekov PE, Shipman JS (2011) Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka. Contrib Mineral Petr 162:83–99

    Article  Google Scholar 

  • Shcherbakov VD, Neill OK, Izbekov PE, Plechov PY (2013) Phase equilibria constraints on pre-eruptive magma storage conditions for the 1956 eruption of Bezymianny Volcano, Kamchatka, Russia. J Volcanol Geoth Res 263:132–140

    Article  Google Scholar 

  • Shipman JS, Turner SJ, Gavrilenko M, Izbekov PE (2010) Rapid modal analysis and whole-rock geochemistry of the 1956–present eruptive products of Bezymianny volcano. AGU Fall Meeting Supplemental Abstract

  • Spiegelman M, Kelemen PB (2003) Extreme chemical variability as a consequence of channelized melt transport. Geochem Geophys Geosyst 4. doi:10.1029/2002GC000336

  • Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121:293–325

    Article  Google Scholar 

  • Sun S-s, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, Geological Society Special Publication No. 42, pp 313–345

  • Tatsumi Y (2000) Slab melting: its role in continental crust formation and mantle evolution. Geophy Res Lett 27:3941–3944

    Article  Google Scholar 

  • Taylor HP (1980) The effects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematics in igneous rocks. Earth Planet Sci Lett 47:243–254

    Article  Google Scholar 

  • Todt W, Cliff RA, Hanser A, Hofmann AW (1996) Evaluation of a 202Pb–205Pb double spike for high-precision lead isotope analysis. In: Basu A, Hart SR (eds) Earth processes: reading the isotopic code. American Geophysical Union, Washington, DC, pp 429–437

    Google Scholar 

  • Tolstykh ML, Naumov VB, Babansky AD, Bogoyavlenskaya GE, Khubunaya SA (2003) Chemical composition, volatile components, and trace elements in andesitic magmas of the Kurile–Kamchatka region. Petrology 5:407–425

    Google Scholar 

  • Tsvetkov AA, Gladkov NG, Volynets ON (1989) Problem of sediment subduction and 10Be isotope in lavas of Kuril Islands and Kamchatka Peninsula. Translated from USSR Academy of Sciences 306:1220–1225

    Google Scholar 

  • Turner S, McDermott F, Hawkesworth C, Kepezhinskas P (1998) A U-series study of lavas from Kamchatka and the Aleutians: constraints on source composition and melting processes. Contrib Mineral Petrol 133:217–234

    Article  Google Scholar 

  • Turner S, Sims KWW, Reagan M, Cook C (2007) A 210Pb–226Ra–230Th–238U study of Klyuchevskoy and Bezymianny volcanoes, Kamchatka. Geochim Cosmichim Acta 71:4771–4785

    Article  Google Scholar 

  • Turner SJ, Izbekov PI, Langmuir C (2013) The magma plumbing system of Bezymianny Volcano: insights from trace element whole-rock geochemistry and amphibole compositions. J Volcanol Geotherm Res 263:108–121

    Article  Google Scholar 

  • Volynets ON, Babanskii AD, Gol’tsman (2000) Variations in isotopic and trace-element composition of lavas from volcanoes of the Northern Group, Kamchatka, in relation to specific features of subduction. Geochem Int 38:974–989

  • Volynets A, Churikova T, Woerner G, Gordeychik BN, Layer P (2010) Mafic late Miocene-quaternary volcanic rocks in the Kamchatka back arc region: implications for subduction geometry and slab history at the Pacific-Aleutian junction. Contrib Mineral Petrol 159:659–687

    Article  Google Scholar 

  • Watson BF, Fujita K (1985) Tectonic evolution of Kamchatka and the sea of Okhotsk and implications for the Pacific Basin. In: Howell DG (ed) Tectonostratigraphic Terranes, AAPG, pp 333–348

  • Weis D, Kieffer B, Maerschalk C, Pretorius W, Barling J (2005) High-precision Pb–Sr–Nd–Hf isotopic characterization of USGS BHVO-1 and BHVO-2 reference materials. Geochem Geophys Geosyst 6. doi:10.1029/2004GC000852

  • White WM, Albarède F, Télouk P (2000) High-precision analysis of Pb isotope ratios by multi-collector ICP–MS. Chem Geol 167:257–270

    Article  Google Scholar 

  • Washington State University (WSU) Geoanalytical Laboratory http://www.sees.wsu.edu/Geolab/note.html

  • Yogodzinski GM, Lees JM, Churikova TG, Dorendorf F, Woerner G, Volynets ON (2001) Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature 409:500–503

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Science Foundation (PIRE-Kamchatka grant OISE-0530278 to Izbekov and a Graduate Research Fellowship to T.M. Kayzar), as well as awards given by the University of Washington Department of Earth and Space Sciences. We owe many thanks to our Russian collaborators at The Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky, Russia, for their field guidance and support: specifically Evgeny Gordeev, Sergey Ushakov, Marina Belousova, Alexander Belousov, Sergey Serovetnikov and Slava Pilipenko. Discussions with Maxim Portnyagin as well as members of the UAF PIRE-Kamchatka research team (Taryn Lopez, Ronni Grapenthin, Steven J. Turner, Vasily Shcherbakov, Jill Shipman, Weston Thelen and others) significantly improved this manuscript. T.M.K. thanks Taryn Lopez for her field support from 2007 to 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa M. Kayzar.

Additional information

Communicated by O. Müntener.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayzar, T.M., Nelson, B.K., Bachmann, O. et al. Deciphering petrogenic processes using Pb isotope ratios from time-series samples at Bezymianny and Klyuchevskoy volcanoes, Central Kamchatka Depression. Contrib Mineral Petrol 168, 1067 (2014). https://doi.org/10.1007/s00410-014-1067-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1067-6

Keywords

Navigation