Skip to main content
Log in

Association of TRPM3 Polymorphism (rs10780946) and Aspirin-Exacerbated Respiratory Disease (AERD)

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Introduction

Aspirin-exacerbated respiratory disease (AERD) refers to the combination of asthma rhinosinusitis and poliposis; ingestion of aspirin or other non-steroid anti-inflammatory drugs exacerbate asthma-like symptoms. The pathogenesis of AERD is unknown, and genetic and environmental factors contribute to the disease. Our objective is identifying polymorphisms associated with susceptibility in a Mexican mestizo population.

Methods

Primarily we performed custom Illumina goldengate array-based genotyping of 1512 SNPs, carefully selected from a variety of acute/chronic inflammatory lung conditions previously reported. Four SNPs in TRPM3 gene showed the lowest p-values (rs10780946, rs7025694, rs1889915, and rs7047645). We further selected rs10780946 and rs7025694 for validation using Taqman genotyping (n = 743; 288 AERD, 272 ATA, and 183 HC).

Results

rs10780946 showed association when compared between AERD and ATA groups under co-dominant (p = 0.006), dominant (p = 0.002), overdominant (p = 0.01), and log-additive (p = 0.03) genetic models. AERD showed increased heterozygous TC (rs10780946–rs7025694) haplotype compared to ATA and HC (p < 0.05). We could not confirm any association between rs7025694 and AERD.

Conclusion

rs10780946 TRPM3 polymorphism is associated with AERD susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Szczeklik A, Nizankowska E (2000) Clinical features and diagnosis of aspirin induced asthma. Thorax 55:S42–S44

    Article  PubMed  PubMed Central  Google Scholar 

  2. Berges-Gimeno MP, Simon RA, Stevenson DD (2002) The natural history and clinical characteristics of aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol 89:474–478

    Article  PubMed  Google Scholar 

  3. Jenkins C, Costello J, Hodge L (2004) Systematic review of prevalence of aspirin induced asthma and its implications for clinical practice. BMJ 328:434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Choi JH, Kim MA, Park HS (2014) An update on the pathogenesis of the upper airways in aspirin-exacerbated respiratory disease. Curr Opin Allergy Clin Immunol 14:1–6

    Article  CAS  PubMed  Google Scholar 

  5. Szczeklik A, Stevenson DD (2003) Aspirin-induced asthma: advances in pathogenesis, diagnosis, and management. J Allergy Clin Immunol 111:913–921

    Article  CAS  PubMed  Google Scholar 

  6. Narayanankutty A, Reséndiz-Hernández JM, Falfán-Valencia R et al (2013) Biochemical pathogenesis of aspirin exacerbated respiratory disease (AERD). Clin Biochem 46:566–578

    Article  CAS  PubMed  Google Scholar 

  7. Farooque SP, Lee TH (2009) Aspirin-sensitive respiratory disease. Annu Rev Physiol 71:465–487

    Article  CAS  PubMed  Google Scholar 

  8. Laidlaw TM, Cutler AJ, Kidder MS et al (2014) Prostaglandin E2 resistance in granulocytes from patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 133:1692–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mastalerz L, Sanak M, Gawlewicz-Mroczka A et al (2008) Prostaglandin E2 systemic production in patients with asthma with and without aspirin hypersensitivity. Thorax 63:27–34

    Article  CAS  PubMed  Google Scholar 

  10. Laidlaw TM, Kidder MS, Bhattacharyya N et al (2012) Cysteinyl leukotriene overproduction in aspirin-exacerbated respiratory disease is driven by platelet-adherent leukocytes. Blood 119:3790–3798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sestini P, Armetti L, Gambaro G et al (1996) Inhaled PGE2 prevents aspirin-induced bronchoconstriction and urinary LTE4 excretion in aspirin-sensitive asthma. Am J Respir Crit Care Med 153:572–575

    Article  CAS  PubMed  Google Scholar 

  12. Stevenson DD, Szczeklik A (2006) Clinical and pathologic perspectives on aspirin sensitivity and asthma. J Allergy Clin Immunol 118:773–786

    Article  CAS  PubMed  Google Scholar 

  13. Steinke JW, Liu L, Huyett P et al (2013) Prominent role of IFN-γ in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 132:856–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park HS (1995) Early and late onset asthmatic responses following lysine-aspirin inhalation in aspirin-sensitive asthmatic patients. Clin Exp Allergy 25:38–40

    Article  CAS  PubMed  Google Scholar 

  15. Crapo RO, Casaburi R, Coates AL et al (2000) Guidelines for methacholine and exercise challenge testing-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med 161:309–329

    Article  CAS  PubMed  Google Scholar 

  16. Adler AJ, Wiley GB, Gaffney PM (2013) Infinium assay for large-scale SNP genotyping applications. J Vis Exp 81:e50683

    PubMed  Google Scholar 

  17. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Solé X, Guinó E, Valls J et al (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22:1928–1929

    Article  PubMed  Google Scholar 

  19. Laidlaw TM, Boyce JA (2015) Platelets in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 135:1407–1414

    Article  CAS  PubMed  Google Scholar 

  20. Cowburn AS, Sladek K, Soja J, Adamek L et al (1998) Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest 101:834–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kamil A, Ghaffar O, Lavigne F et al (1998) Comparison of inflammatory cell profile and Th2 cytokine expression in the ethmoid sinuses, maxillary sinuses, and turbinates of atopic subjects with chronic sinusitis. Otolaryngol Head Neck Surg 118:804–809

    Article  CAS  PubMed  Google Scholar 

  22. Payne SC, Early SB, Huyett P et al (2011) Evidence for distinct histologic profile of nasal polyps with and without eosinophilia. Laryngoscope 121:2262–2267

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fischer AR, Rosenberg MA, Lilly CM et al (1994) Direct evidence for a role of the mast cell in the nasal response to aspirin in aspirin-sensitive asthma. J Allergy Clin Immunol 94:1046–1056

    Article  CAS  PubMed  Google Scholar 

  24. Sladek K, Szczeklik A (1993) Cysteinyl leukotrienes overproduction and mast cell activation in aspirin-provoked bronchospasm in asthma. Eur Respir J 6:391–399

    CAS  PubMed  Google Scholar 

  25. Grimm C, Kraft R, Sauerbruch S et al (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278:21493–21501

    Article  CAS  PubMed  Google Scholar 

  26. Grimm C, Kraft R, Schultz G et al (2005) Activation of the melastatin-related cation channel TRPM3 by D-erythro-sphingosine. Mol Pharmacol 67:798–805

    Article  CAS  PubMed  Google Scholar 

  27. Freichel M, Almering J, Tsvilovskyy V (2012) The Role of TRP Proteins in Mast Cells. Front Immunol 3:150

    Article  PubMed  PubMed Central  Google Scholar 

  28. Humphray SJ, Oliver K, Hunt AR et al (2004) DNA sequence and analysis of human chromosome 9. Nature 429:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Steinke JW, Negri J, Liu L et al (2014) Aspirin activation of eosinophils and mast cells: implications in the pathogenesis of aspirin-exacerbated respiratory disease. J Immunol 193:41–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Telleria JJ, Blanco-Quiros A, Varillas D et al (2008) ALOX5 promoter genotype and response to montelukast in moderate persistent asthma. Respir Med 102:857–861

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This paper constitutes a partial fulfillment of the Graduate Program in Doctorado en Investigación en Medicina of the Instituto Politécnico Nacional (IPN) for AN. A Narayanankutty acknowledges the scholarship and financial support provided by the National Council of Science and Technology (CONACyT) # 265560.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis M. Teran or Ramcés Falfán-Valencia.

Ethics declarations

Conflict of Interest

None.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanankutty, A., Palma-Lara, I., Pavón-Romero, G. et al. Association of TRPM3 Polymorphism (rs10780946) and Aspirin-Exacerbated Respiratory Disease (AERD). Lung 194, 273–279 (2016). https://doi.org/10.1007/s00408-016-9852-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-016-9852-9

Keywords

Navigation