Skip to main content
Log in

Airway Vagal Neuroplasticity Associated with Respiratory Viral Infections

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Respiratory virus infections leads to coughing, sneezing, and increases in reflex parasympathetic bronchoconstriction and secretions. These responses to viral infection are exclusively or largely secondary to changes in the function of the nervous system. For many with underlying airway pathologies such as asthma and COPD, this neuroplasticity can lead to disease exacerbations and hospitalization. Relatively little is understood about the cellular and molecular mechanisms that underlie the changes in neuronal control of the respiratory tract during viral infection, but the evidence supports the idea that changes occur in the physiology of both the sensory and autonomic innervation. Virus infection can lead to acute increases in the activity of sensory nerves as well as to genetic changes causing alterations in sensory nerve phenotype. In addition, respiratory viral infections are associated with changes in the control of neurotransmitter release from cholinergic nerve endings terminating at the level of the airway smooth muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Footitt J, Johnston SL (2009) Cough and viruses in airways disease: mechanisms. Pulm Pharmacol Ther 22(2):108–113

    Article  CAS  PubMed  Google Scholar 

  2. McGarvey LP, Nishino T (2004) Acute and chronic cough. Pulm Pharmacol Ther 17(6):351–354. doi:10.1016/j.pupt.2004.09.017

    Article  CAS  PubMed  Google Scholar 

  3. Dulek DE, Peebles RS Jr (1810) Viruses and asthma. Biochim Biophys Acta 11:1080–1090. doi:10.1016/j.bbagen.2011.01.012

    Google Scholar 

  4. Sethi S (2011) Molecular diagnosis of respiratory tract infection in acute exacerbations of chronic obstructive pulmonary disease. Clin Infect Dis 52(Suppl 4):S290–295. doi:10.1093/cid/cir044

    Article  PubMed  Google Scholar 

  5. Broadley KJ, Blair AE, Kidd EJ, Bugert JJ, Ford WR (2010) Bradykinin-induced lung inflammation and bronchoconstriction: role in parainfluenze-3 virus-induced inflammation and airway hyperreactivity. J Pharmacol Exp Ther 335(3):681–692. doi:10.1124/jpet.110.171876

    Article  CAS  PubMed  Google Scholar 

  6. Buckner CK, Songsiridej V, Dick EC, Busse WW (1985) In vivo and in vitro studies on the use of the guinea pig as a model for virus-provoked airway hyperreactivity. Am Rev Respir Dis 132(2):305–310

    CAS  PubMed  Google Scholar 

  7. Fryer AD, Jacoby DB (1991) Parainfluenza virus infection damages inhibitory M2 muscarinic receptors on pulmonary parasympathetic nerves in the guinea-pig. Br J Pharmacol 102(1):267–271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Elwood W, Lotvall JO, Barnes PJ, Chung KF (1993) Airway hyperresponsiveness to acetylcholine and to tachykinins after respiratory virus infection in the guinea pig. Ann Allergy 70(3):231–236

    CAS  PubMed  Google Scholar 

  9. Sorkness R, Clough JJ, Castleman WL, Lemanske RF Jr (1994) Virus-induced airway obstruction and parasympathetic hyperresponsiveness in adult rats. Am J Respir Crit Care Med 150(1):28–34. doi:10.1164/ajrccm.150.1.8025764

    Article  CAS  PubMed  Google Scholar 

  10. Lee AM, Fryer AD, van Rooijen N, Jacoby DB (2004) Role of macrophages in virus-induced airway hyperresponsiveness and neuronal M2 muscarinic receptor dysfunction. Am J Physiol Lung Cell Mol Physiol 286(6):L1255–1259. doi:10.1152/ajplung.00451.2003

    Article  CAS  PubMed  Google Scholar 

  11. Nie Z, Scott GD, Weis PD, Itakura A, Fryer AD, Jacoby DB (2011) Role of TNF-alpha in virus-induced airway hyperresponsiveness and neuronal M(2) muscarinic receptor dysfunction. Br J Pharmacol 164(2b):444–452. doi:10.1111/j.1476-5381.2011.01393.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Laitinen LA, Elkin RB, Empey DW, Jacobs L, Mills J, Nadel JA (1991) Bronchial hyperresponsiveness in normal subjects during attenuated influenza virus infection. Am Rev Respir Dis 143(2):358–361

    Article  CAS  PubMed  Google Scholar 

  13. Grunberg K, Kuijpers EA, de Klerk EP, de Gouw HW, Kroes AC, Dick EC, Sterk PJ (1997) Effects of experimental rhinovirus 16 infection on airway hyperresponsiveness to bradykinin in asthmatic subjects in vivo. Am J Respir Crit Care Med 155(3):833–838. doi:10.1164/ajrccm.155.3.9117013

    Article  CAS  PubMed  Google Scholar 

  14. Grunberg K, Timmers MC, Smits HH, de Klerk EP, Dick EC, Spaan WJ, Hiemstra PS, Sterk PJ (1997) Effect of experimental rhinovirus 16 colds on airway hyperresponsiveness to histamine and interleukin-8 in nasal lavage in asthmatic subjects in vivo. Clin Exp Allergy 27(1):36–45

    Article  CAS  PubMed  Google Scholar 

  15. Curley FJ, Irwin RS, Pratter MR, Stivers DH, Doern GV, Vernaglia PA, Larkin AB, Baker SP (1988) Cough and the common cold. Am Rev Respir Dis 138(2):305–311. doi:10.1164/ajrccm/138.2.305

    Article  CAS  PubMed  Google Scholar 

  16. McAlexander MA, Gavett SH, Kollarik M, Undem BJ (2015) Vagotomy reverses established allergen-induced airway hyperreactivity to methacholine in the mouse. Respir Physiol Neurobiol 212–214:20–24. doi:10.1016/j.resp.2015.03.007

    Article  PubMed  Google Scholar 

  17. Trankner D, Hahne N, Sugino K, Hoon MA, Zuker C (2014) Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. Proc Natl Acad Sci USA 111(31):11515–11520. doi:10.1073/pnas.1411032111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Costello RW, Evans CM, Yost BL, Belmonte KE, Gleich GJ, Jacoby DB, Fryer AD (1999) Antigen-induced hyperreactivity to histamine: role of the vagus nerves and eosinophils. Am J Physiol 276(5 Pt 1):L709–714

    CAS  PubMed  Google Scholar 

  19. Lee LYMR (1993) Histamine enhances vagal pulmonary C-fiber responses to capsaicin and lung inflation. Respir Physiol 93(1):83–96

    Article  CAS  PubMed  Google Scholar 

  20. Lee LY, Yu J (2014) Sensory nerves in lung and airways. Compr Physiol 4(1):287–324. doi:10.1002/cphy.c130020

    Article  PubMed  Google Scholar 

  21. Undem BJ, Potenzieri C (2012) Autonomic neural control of intrathoracic airways. Compr Physiol 2(2):1241–1267. doi:10.1002/cphy.c110032

    PubMed  Google Scholar 

  22. Lee L-Y, Undem BJ (2005) Bronchopulmonary vagal afferent nerves. Advances in vagal afferent neurobiology. CRC Taylor and Francis, Boca Raton

    Google Scholar 

  23. Coleridge HMCJ (1977) Impulse activity in afferent vagal C-fibres with endings in the intrapulmonary airways of dogs. Respir Physiol 29:125–142

    Article  CAS  PubMed  Google Scholar 

  24. Sherrington C (1906) The integrated action of the nervous system, vol 1. Yale University Press, New Haven

    Google Scholar 

  25. Fischer AMG, Saria A, Philippin B, Kummer W (1996) Induction of tachykinin gene and peptide expression in guinea pig nodose primary afferent neurons by allergic airway inflammation. J Clin Invest 98:2284–2291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Chuaychoo BHD, Myers AC, Kollarik M, Undem BJ (2005) Allergen-induced substance P synthesis in large-diameter sensory neurons innervating the lungs. J Allergy Clin Immunol 116(2):325–331

    Article  CAS  PubMed  Google Scholar 

  27. Lieu TUB (2011) Allergen and BDNF-induced TRP channel expression in nodose cough-fiber neurons. FASEB J 25(864):814

    Google Scholar 

  28. Myers ACKR, Undem BJ (2002) Allergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways. Am J Physiol Lung Cell Mol Physiol 282:L775–L781

    Article  CAS  PubMed  Google Scholar 

  29. Zhang GLR, Wiggers M, Snow DM, Lee LY (2008) Altered expression of TRPV1 and sensitivity to capsaicin in pulmonary myelinated afferents following chronic airway inflammation in the rat. J Physiol 586:5771–5786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Neumann S, Doubell TP, Leslie T, Woolf CJ (1996) Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature 384(6607):360–364. doi:10.1038/384360a0

    Article  CAS  PubMed  Google Scholar 

  31. Carr MJ, Hunter DD, Jacoby DB, Undem BJ (2002) Expression of tachykinins in nonnociceptive vagal afferent neurons during respiratory viral infection in guinea pigs. Am J Respir Crit Care Med 165(8):1071–1075

    Article  PubMed  Google Scholar 

  32. Lieu TKM, Myers AC, Undem BJ (2011) Neurotrophin and GDNF family ligand receptor expression in vagal sensory nerve subtypes innervating the adult guinea pig respiratory tract. Am J Physiol Lung Cell Mol Physiol 300(5):L790–L798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Caterina MJJD (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517

    Article  CAS  PubMed  Google Scholar 

  34. Veldhuis NA, Poole DP, Grace M, McIntyre P, Bunnett NW (2015) The G protein-coupled receptor-transient receptor potential channel axis: molecular insights for targeting disorders of sensation and inflammation. Pharmacol Rev 67(1):36–73. doi:10.1124/pr.114.009555

    Article  PubMed  Google Scholar 

  35. Tortorolo L, Langer A, Polidori G, Vento G, Stampachiacchere B, Aloe L, Piedimonte G (2005) Neurotrophin overexpression in lower airways of infants with respiratory syncytial virus infection. Am J Respir Crit Care Med 172(2):233–237. doi:10.1164/rccm.200412-1693OC

    Article  PubMed  Google Scholar 

  36. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736. doi:10.1146/annurev.neuro.24.1.677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Chowdary PD, Che DL, Cui B (2012) Neurotrophin signaling via long-distance axonal transport. Annu Rev Phys Chem 63:571–594. doi:10.1146/annurev-physchem-032511-143704

    Article  CAS  PubMed  Google Scholar 

  38. Zweifel LSKR, Ginty DD (2005) Functions and mechanisms of retrograde neurotrophin signalling. Nat Rev Neurosci 22(3):146–152

    Google Scholar 

  39. Ye XM, Zhong NS, Liu CL, Chen RC (2011) Cough reflex sensitivity is increased in guinea pigs with parainfluenza virus infection. Exp Lung Res 37(3):186–194. doi:10.3109/01902148.2010.540768

    Article  CAS  PubMed  Google Scholar 

  40. Carr MJKM, Meeker SN, Undem BJ (2003) A role for TRPV1 in bradykinin-induced excitation of vagal airway afferent nerve terminals. J Pharmacol Exp Ther 304:1275–1279

    Article  CAS  PubMed  Google Scholar 

  41. Kollarik MUB (2002) Mechanisms of acid-induced activation of airway afferent nerve fibres in guinea-pig. J Physiol 543:591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Grace M, Birrell MA, Dubuis E, Maher SA, Belvisi MG (2012) Transient receptor potential channels mediate the tussive response to prostaglandin E2 and bradykinin. Thorax 67(10):891–900. doi:10.1136/thoraxjnl-2011-201443

    Article  PubMed Central  PubMed  Google Scholar 

  43. Tan Y, Yang T, Liu S, Liu H, Xiang Y, Qu F, Li H, Qin X (2008) Infection with respiratory syncytial virus alters peptidergic innervation in the lower airways of guinea-pigs. Exp Physiol 93(12):1284–1291. doi:10.1113/expphysiol.2008.043521

    Article  CAS  PubMed  Google Scholar 

  44. Auais A, Adkins B, Napchan G, Piedimonte G (2003) Immunomodulatory effects of sensory nerves during respiratory syncytial virus infection in rats. Am J Physiol Lung Cell Mol Physiol 285(1):L105–113. doi:10.1152/ajplung.00004.2003

    Article  CAS  PubMed  Google Scholar 

  45. Rynko AE, Fryer AD, Jacoby DB (2014) Interleukin-1beta mediates virus-induced m2 muscarinic receptor dysfunction and airway hyperreactivity. Am J Respir Cell Mol Biol 51(4):494–501. doi:10.1165/rcmb.2014-0009OC

    Article  PubMed Central  PubMed  Google Scholar 

  46. Fryer AD, Maclagan J (1984) Muscarinic inhibitory receptors in pulmonary parasympathetic nerves in the guinea-pig. Br J Pharmacol 83(4):973–978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley J. Undem.

Ethics declarations

Conflict of Interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaccone, E.J., Undem, B.J. Airway Vagal Neuroplasticity Associated with Respiratory Viral Infections. Lung 194, 25–29 (2016). https://doi.org/10.1007/s00408-015-9832-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-015-9832-5

Keywords

Navigation