Skip to main content
Log in

HJP272, A Novel Endothelin Receptor Antagonist, Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Hamsters

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Introduction

Previous studies from this laboratory indicate that endothelin-1 (ET-1), a potent vasoconstrictor, may play an important role in lipopolysaccharide (LPS)-induced release of neutrophils from the pulmonary microvasculature. To further test this concept, Syrian hamsters were treated with a novel endothelin receptor A (ETA) antagonist (HJP272) prior to intratracheal instillation of LPS.

Methods

The effect of HJP272 on the LPS-induced inflammatory reaction was determined by measuring: (1) lung histopathological changes, (2) total neutrophils in bronchoalveolar lavage fluid (BALF), (3) expression of tumor necrosis factor receptor 1 (TNFR1) by BALF macrophages, and (4) alveolar septal cell apoptosis.

Results

Treatment with HJP272 significantly reduced each of these parameters during a 24-hr period following LPS instillation, supporting the concept that limiting the activity of ET-1 may reduce the extent of lung injury. This hypothesis was further tested by giving ET-1 prior to LPS instillation, which resulted in a marked enhancement of LPS-induced lung inflammation, as measured by BALF neutrophils and TNFR1-positive macrophages. Furthermore, the increase in neutrophils resulting from treatment with ET-1 was significantly reduced by HJP272, again demonstrating the ability of ETA receptor antagonists to limit the influx of these cells into the lung.

Conclusions

These findings suggest a potential therapeutic role for these agents in diseases where neutrophils are a significant cause of lung injury, such as bronchopneumonia, respiratory distress syndrome, and chronic obstructive pulmonary disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lu Y, Yeh W, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42:145–151

    Article  CAS  PubMed  Google Scholar 

  2. Savva A, Roger T (2013) Targeting toll-like receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. Front Immunol. doi:10.3389/fimmu.2013.00387

    PubMed Central  PubMed  Google Scholar 

  3. Chen H, Bai C, Wang X (2010) The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Rev Respir Med 4:773–783

    Article  CAS  PubMed  Google Scholar 

  4. Hirano S (1997) Quantitative time-course profiles of bronchoalveolar lavage cells following intratracheal instillation of lipopolysaccharide in mice. Ind Health 35:353–358

    Article  CAS  PubMed  Google Scholar 

  5. Cox G, Crossley J, Xing Z (1995) Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am J Respir Cell Mol Biol 12:232–237

    Article  CAS  PubMed  Google Scholar 

  6. Khimji AK, Rockey DC (2010) Endothelin–biology and disease. Cell Signal 22:1615–1625

    Article  CAS  PubMed  Google Scholar 

  7. Fagan K, McMurtry I, Rodman D (2001) Role of endothelin-1 in lung disease. Respir Res 2:90–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bhavsar TM, Cerreta JM, Liu M, Reznik SE, Cantor JO (2008) Phosphoramidon, an endothelin-converting enzyme inhibitor, attenuates lipopolysaccharide-induced acute lung injury. Exper Lung Res 34:141–154

    Article  CAS  Google Scholar 

  9. Bhavsar TM, Liu X, Cerreta JM, Liu M, Cantor JO (2008) Endothelin-1 potentiates smoke-induced acute lung inflammation. Exper Lung Res 34:707–716

    Article  CAS  Google Scholar 

  10. Szarka RJ, Wang N, Gordon L, Nation PN, Smith RH (1997) A murine model of pulmonary damage induced by lipopolysaccharide via intranasal instillation. J Immunol Methods 202:49–57

    Article  CAS  PubMed  Google Scholar 

  11. Zhang JS, Tan YR, Xiang Y, Luo ZQ, Qin XQ (2006) Regulatory peptides modulate adhesion of polymorphonuclear leukocytes to bronchial epithelial cells through regulation of interleukins, ICAM-1and NF-kappa B/IkappaB. Acta Biochim Biophys Sin 38:119–128

    Article  CAS  PubMed  Google Scholar 

  12. DiVietro JA, Smith MJ, Smith BR, Petruzzelli L, Larson RS, Lawrence MB (2001) Immobilized IL-8 triggers progressive activation of neutrophils rolling in vitro on P-selectin and intercellular adhesion molecule-1. J Immunol 67:4017–4025

    Article  Google Scholar 

  13. Reutershan J, Morris MA, Burcin TL, Smith DF, Chang D, Saprito MS, Ley K (2006) Critical role of endothelial CXCR2 in LPS-induced neutrophil migration into the lung. J Clin Invest 116:695–702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Sato Y, Hogg JC, English D, van Eeden SF (2000) Endothelin-1 changes polymorphonuclear leukocytes’ deformability and CD11b expression and promotes their retention in the lung. Am J Respir Cell Mol Biol 23:404–410

    Article  CAS  PubMed  Google Scholar 

  15. Thomas PS (2001) Tumor necrosis factor-α: the role of this multifunctional cytokine in asthma. Immunol Cell Biol 79:132–140

    Article  CAS  PubMed  Google Scholar 

  16. Churg A, Wang RD, Hsin T, Wang X, Changshi X, Wright JL (2004) Tumor necrosis factor- α drives 70 % of cigarette smoke induced emphysema in the mouse. Am J Respir Crit Care Med 170:492–498

    Article  PubMed  Google Scholar 

  17. Mukhopadhyay S, Hoidal JR, Mukherjee TK (2006) Role of TNF α in pulmonary pathophysiology. Respir Res. doi:10.1186/1465-9921-7-125

    PubMed Central  PubMed  Google Scholar 

  18. Calkins CM, Heimbach JK, Bensard DD, Song Y, Raeburn CD, Meng X, McIntyre RC Jr (2001) TNF receptor I mediates chemokine production and neutrophil accumulation in the lung following systemic lipopolysaccharide. J Surg Res 101:232–237

    Article  CAS  PubMed  Google Scholar 

  19. Rosanò L, Spinella F, Bagnato A (2013) Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 13:637–651

    Article  PubMed  Google Scholar 

  20. Kasahara Y, Tuder RM, Taraseviciene-Stewart L, Le Cras TD, Abman S, Hirth PK, Waltenberger J, Voelkel NF (2000) Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 106:1311–1319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Stolk J, Rudolphus A, Davies P, Osinga D, Dijkman JH, Agarwal L, Keenan KP, Fletcher D, Kramps JA (1992) Induction of emphysema and bronchial mucus cell hyperplasia by intratracheal instillation of lipopolysaccharide in the hamster. J Path 167:349–356

    Article  CAS  PubMed  Google Scholar 

  22. Pollock DM, Keith TL, Highsmith RF (1995) Endothelin receptors and calcium signaling. FASEB J 9:1196–1204

    CAS  PubMed  Google Scholar 

  23. Lu B, Figini M, Emanueli C, Geppetti P, Grady EF, Gerard NP, Ansell J, Payan DG, Gerard C, Bunnett N (1997) The control of microvascular permeability and blood pressure by neutral endopeptidase. Nat Med 3:904–907

    Article  CAS  PubMed  Google Scholar 

  24. Painter RG, Aiken ML (1995) Regulation of N-formyl-methionyl-leucyl-phenylalanine receptor recycling by surface membrane neutral endopeptidase-mediated degradation of ligand. J Leukoc Biol 58:468–476

    CAS  PubMed  Google Scholar 

  25. Day AL, Wick E, Jordan TH, Jaffray CE, Bunnett NW, Grady EF, Kirkwood KS (2005) Neutral endopeptidase determines the severity of pancreatitis-associated lung injury. J Surg Res 128:21–27

    Article  CAS  PubMed  Google Scholar 

  26. Sitbon O, Badesch DB, Channick RN, Frost A, Robbins IM, Simonneau G, Tapson VF, Rubin LJ (2003) Effects of the dual endothelin receptor antagonist bosentan in patients with pulmonary arterial hypertension: a 1-year follow-up study. Chest 124:247–254

    Article  CAS  PubMed  Google Scholar 

  27. Vizza CD, Fedele F, Pezzuto B, Rubin LJ (2012) Safety and efficacy evaluation of ambrisentan in pulmonary hypertension. Expert Opin Drug Saf 11:1003–1011

    Article  CAS  PubMed  Google Scholar 

  28. Liu X, Bhavsar T, Liu M, Cerreta J, Cantor J (2012) Differential effect of pre- and post-treatment with an endothelin receptor A antagonist in bleomycin-induced pulmonary fibrosis. Am J Respir Crit Care Med 185:A5405

    Google Scholar 

  29. Zarpelon AC, Pinto LG, Cunha TM, Vieira SM, Carregaro V, Souza GR, Silva JS, Ferreira SH, Cunha FQ, Verri WA Jr (2012) Endothelin-1 induces neutrophil recruitment in adaptive inflammation via TNFα and CXCL1/CXCR2 in mice. Can J Physiol Pharmacol 90:187–199

    Article  CAS  PubMed  Google Scholar 

  30. Fernandez-Patron C, Zouki C, Whittal R, Chan JS, Davidge ST, Filep JG (2001) Matrix metalloproteinases regulate neutrophil-endothelial cell adhesion through generation of endothelin-1. FASEB J 5:2230–2240

    Article  Google Scholar 

  31. Bhavsar T, Liu XJ, Patel H, Stephani R, Cantor JO (2008) Preferential recruitment of neutrophils by endothelin-1 in acute lung inflammation induced by lipopolysaccharide or cigarette smoke. Int J Chron Obstruct Pulmon Dis 3:477–481

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Barnes PJ (2013) New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat Rev Drug Discov 12:543–559

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome Cantor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Liu, X., Liu, M. et al. HJP272, A Novel Endothelin Receptor Antagonist, Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Hamsters. Lung 192, 803–810 (2014). https://doi.org/10.1007/s00408-014-9628-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-014-9628-z

Keywords

Navigation