Skip to main content
Log in

Polygons of Petrović and Fine, algebraic ODEs, and contemporary mathematics

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

In this paper, we study the genesis and evolution of geometric ideas and techniques in investigations of movable singularities of algebraic ordinary differential equations. This leads us to the work of Mihailo Petrović on algebraic differential equations (ODEs) and in particular the geometric ideas expressed in his polygon method from the final years of the nineteenth century, which have been left completely unnoticed by the experts. This concept, also developed independently and in a somewhat different direction by Henry Fine, generalizes the famous Newton–Puiseux polygonal method and applies to algebraic ODEs rather than algebraic equations. Although remarkable, the Petrović legacy has been practically neglected in the modern literature, although the situation is less severe in the case of results of Fine. Therefore, we study the development of the ideas of Petrović and Fine and their places in contemporary mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Let us briefly mention basic biographic data about Lazarus Fuchs. He was born in 1833 in Moschina, the Grand Duchy of Posen of Kingdom of Prussia, nowadays Poland. He worked on his PhD in Berlin University with Kummer as his advisor, from 1854 till 1858, when he defended a thesis on the lines of curvature on surfaces. His interest in differential equations came from his association with Weierstrass (Gray 1984). In 1882 he returned to Berlin where he got a position of a full professor of the Berlin University. He was elected a member of Berlin Academy in 1884. From 1892 till his death, Fuchs served as the Editor-in-Chief of “Journal für die reine und angewandte Mathematik” (Crelle’s journal). He died in Berlin in 1902.

  2. Paul Painlevé was born in Paris in 1863. He graduated from the École Normale in 1877 and went on to become a full professor of the École Normale and Sorbonne. He was an elected member of the French Academy since 1900. After 1910, and election to the national parliament, Painlevé shifted his focus from science to politics. He was a minister of several French governments, including the post of the Minster of War during the World War I. Painlevé served as the Prime Minister of France two times: September 12–November 16, 1917, and April 17–November 28, 1925. Painlevé died in Paris in 1933.

  3. Kovalevskaya’s name on her published papers is given as Kowalevski but she is often called Kovalevskaya in the current literature, following English transcription of her Russian family name.

References

  • Aroca F., Cano J., Jung F. 2003. Power series solutions for non-linear PDEs. Conference: Symbolic and Algebraic Computation, International Symposium ISSAC 2003, Drexel University, Philadelphia, Pennsylvania, USA, August 3–6, Proceedings.

  • Berić M. 1912. Figural polygons of first order ODEs and their connection to the properties of the integrals. PhD thesis, in Serbian, University of Belgrade.

  • Boutroux P. 1913–1914. Recherches sur les transcendentes de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre. Annales Scientifiques de l’École Normale Supérieure 30:255–375 (31:99–159).

  • Brieskorn, E., and H. Knörrer. 1986. Plane Algebraic Curves, pp. 370–383.

  • Briot, C., and J. Bouquet. 1856. Proprietes des fonctions definie par des equations differentielles. J. l’Ecole Polytechnique. Cah 36: 133–198.

    Google Scholar 

  • Briot, C., and J. Bouquet. 1875. Thèorie des fonctions elliptiques, p. 389.

  • Bruno, A.D. 2000. Power geometry in algebraic and differential equations. Amsterdam: Elsevier Science.

    Google Scholar 

  • Bruno, A.D. 2004. Asymptotic behaviour and expansions of solutions of an ordinary differential equation. Russian Mathematical Surveys 59 (3): 429–480.

    MathSciNet  Google Scholar 

  • Bruno, A.D., and I.V. Goryuchkina. 2008. Boutroux asymptotic forms of solutions to Painlevé equations and Power Geometry. Doklady Mathematics 78 (2): 681–685.

    MathSciNet  Google Scholar 

  • Bruno, A.D., and I.V. Goryuchkina. 2010. Asymptotic expansions of the solutions of the sixth Painlevé equation. Transactions of the Moscow Mathematical Society 2010:1–104.

  • Bruno, A.D., and A.V. Parusnikova. 2012. Expansions of solutions to the fifth Painleve equation near its nonsingular point. Doklady Mathematics 85 (1): 87–92.

    MathSciNet  MATH  Google Scholar 

  • Bruno, A.D., and T.V. Shadrina. 2007. Axisymmetric boundary layer on a needle. Transactions of the Moscow Mathematical Society 68: 201–259.

    MathSciNet  MATH  Google Scholar 

  • Cano, J. 1993a. An extension of the Newton–Puiseux polygon construction to give solutions of Pfaffian forms. Annales de l’institut Fourier 43: 125–142.

    MathSciNet  MATH  Google Scholar 

  • Cano, J. 1993b. On the series defined by differential equations, with an extension of the Puiseux polygon construction to these equations. Analysis 13: 103–119.

    MathSciNet  MATH  Google Scholar 

  • Cano, J., Ayuso P. Fortuny. 2012. Power series solutions of non-linear q-difference equations and the Newton–Puiseux polygon. arXiv:1209.0295v1.

  • Chazy, J. 1911. Sur les équations differentielles du troisieme ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes. Acta Mathematica 34: 317–385.

    MathSciNet  MATH  Google Scholar 

  • Cooke, R. 1984. The mathematics of Sonya Kovalevskaya. Springer, New York, xiii+234 pp. ISBN: 0-387-96030-9.

  • Cosgrove, C.M. 2000a. Chazy classes IX–XI of third-order differential equations. Studies in Applied Mathematics 104: 171–228.

    MathSciNet  MATH  Google Scholar 

  • Cosgrove, C.M. 2000b. Higher-order Painlevé equations in the polynomial class. I. Bureau symbol P2. Studies in Applied Mathematics 104: 1–65.

    MathSciNet  MATH  Google Scholar 

  • Cosgrove, C.M. 2006. Higher-order Painlevé equations in the polynomial class. II. Bureau symbol P1. Studies in Applied Mathematics 116: 321–413.

    MathSciNet  MATH  Google Scholar 

  • Cramer, G. 1750. Introduction a l’analyse des lignes courbes algébraique, Fretres Cramer et Cl. Philibert.

  • Dragović, V. 2019. Mihailo Petrović, Algebraic geometry and differential equations, pp. 257–266, in Mihailo Petrović Alas: life work, times, Serbian Academy of Sciences and Arts, Editor-in-chief: Marko Andjelković Editors of publication: Stevan Pilipović, Gradimir V. Milovanović, Žarko Mijajlović, Belgrade.

  • Dragović, V., and I. Goryuchkina. 2020. About the cover: The Fine–Petrović polygons and the Newton–Puiseux method for algebraic ordinary differential equations. Bulletin of the AMS 57 (2): 293–299.

    MATH  Google Scholar 

  • Dragović, V., V. Shramchenko. 2019. Algebro-geometric approach to an Okamoto transformation, the Painlevé VI and Schlesinger equations. Annales Henri Poincaré 20(4):1121–1148.

  • Dragović, V., R. Gontsov, and V. Shramchenko. 2018. Triangular Schlesinger systems and superelliptic curves. arXiv:1812.09795

  • Filipuk, G., and R.G. Halburd. 2009a. Movable algebraic singularities of second-order ordinary differential equations. Journal of Mathematical Physics 50: 023509.

    MathSciNet  MATH  Google Scholar 

  • Filipuk, G., and R.G. Halburd. 2009b. Movable singularities of equations of Lienard type. Computational Methods and Function Theory 9: 551–563.

    MathSciNet  MATH  Google Scholar 

  • Filipuk, G., and R.G. Halburd. 2009c. Rational ODEs with movable algebraic singularities. Studies in Applied Mathematics 123: 17–36.

    MathSciNet  MATH  Google Scholar 

  • Fine, H. 1889. On the functions defined by differential equations, with an extension of the Puiseux polygon construction to these equations. American Journal of Mathematics 11 (4): 317–328.

    MathSciNet  MATH  Google Scholar 

  • Fine, H. 1890. Singular solutions of ordinary differential equations. American Journal of Mathematics 12 (3): 295–322.

    MathSciNet  MATH  Google Scholar 

  • Fuchs, L. 1885a. Über den Charakter der Integrale von Differentialgleichungen zwischen complexen Variabeln. Sitzungsberichte der Königlich preussische Akademie der Wissenschaften zu Berlin 5–12.

  • Fuchs, L. 1885b. Über Differentialgleichungen, deren Integrale feste Verzweigungspunkte besitzen. Ges Werke II: 355.

    Google Scholar 

  • Fuchs, R. 1906. Sur quelques équations différentielles linéaires du second ordre, Comptes Rendus.

  • Gambier, B. 1910. Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est á á points critiques fixes. Acta Mathematica.

  • Ghys, E. 2017. A singular mathematical promenade. ENS Editions, p. 302.

  • Golubev, V. V. 1941. Lectures on analytic theory of differential equations, 436. Moscow: Leningrad (in Russian).

  • Golubev, V.V. 1911. About one application of Picard’s theorem to the theory of differential equations. Mathematics Sbornik 27 (4): 560–562 (in Russian).

  • Golubev, V.V. 1912. On the theory of Painlevé equations. Mathematics Sbornik 28(2):650 (in Russian).

  • Gray, J.J. 1984. Fuchs and the theory of differential equations. Bulletin of the American Mathematical Society (New Series) 10 (1): 1–26.

    MathSciNet  MATH  Google Scholar 

  • Grigor’ev, DYu., and M.F. Singer. 1991. Solving ordinary differential equations in terms of series with real exponents. Transactions of the American Mathematical Society 327 (1): 329–351.

    MathSciNet  MATH  Google Scholar 

  • Hermite, C. 1873. Cours lithographié de l’Ecole polytechnique.

  • Hille, E. 1979. On some generalizations of the Malmquist theorem. Mathematica Scandinavica 39: 59–79.

    MathSciNet  MATH  Google Scholar 

  • Hinkkanen, A., and I.J. Laine. 2004. The meromorphic nature of the sixth Painleve transcendents. Journal d’Analyse Mathematique 94: 319–342.

    MathSciNet  MATH  Google Scholar 

  • Ince, E.L. 1956. Ordinary differential equations. New York: McGraw-Hill.

    Google Scholar 

  • Jimbo, M., T. Miwa, and K. Ueno. 1981. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and \(\tau \)-function. Physica D: Nonlinear Phenomena 2 (2): 306–352.

    MathSciNet  MATH  Google Scholar 

  • Joshi, N., and M. Radnović. 2016. Asymptotic behaviour of the fourth Painlevé transcendents in the space of initial values. Constructive Approximation 44 (2): 195–231.

    MathSciNet  MATH  Google Scholar 

  • Joshi, N., and M. Radnović. 2018. Asymptotic behaviour of the third Painlevé transcendents in the space of initial values. Proceedeings of the London Mathematical Society (3) 116 (6): 1329–1364.

    MATH  Google Scholar 

  • Karadjordjevic, D. 2017. The truth about my life, autobiography, 494. Belgarde: Marković Sontić. (in Serbian).

    Google Scholar 

  • Kaveh, K., and A. Khovanskii. 2012. Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Annals of Mathematics 176 (2): 925–978.

    MathSciNet  MATH  Google Scholar 

  • Kecker, T. 2012. A class of non-linear ODEs with movable algebraic singularities. Computational Methods and Function Theory 12: 653–667.

    MathSciNet  MATH  Google Scholar 

  • Kecker, T. 2014. On the singularity structure of differential equations in the complex plane, PhD thesis, UCL.

  • Kowalevski, S. 1889a. Sur le problème de la rotation d’un corps solide autour d’un point fixe. Acta Mathematica 12: 177–232.

    MathSciNet  MATH  Google Scholar 

  • Kowalevski, S. 1889b. Sur une propriete du systeme d’equations differentielles qui definit la rotation d’un corps solide autour d’un point fixe. Acta Mathematica 14: 81–93.

    MathSciNet  MATH  Google Scholar 

  • Leitch, A. 1978. A Princeton companion. Princeton: Princeton University Press.

    Google Scholar 

  • Malgrange, B. 1983. Sur les d’eformations isomonodromiques. I. Singularités réguliéres, Mathematics and physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser Boston, Boston, MA, 401–426.

  • Malgrange, B. 1989. Sur le théorème de Maillet. Asymptotic Analysis 2: 1–4.

    MathSciNet  MATH  Google Scholar 

  • Malmquist, J. 1913. Sur les fonctions à un nombre fini de brances définies par les équations differentielles du premier ordre. Acta Mathematica 36: 297–334.

    MathSciNet  Google Scholar 

  • Malmquist, J. 1920. Sur les fonctions a un nombre fini de branches satisfaisant a une équation différentielle du premier ordre. Acta Mathematica 42: 317–325.

    MathSciNet  MATH  Google Scholar 

  • Malmquist, J. 1923. Sur les équations différentielles du second ordre, dont l’intégrale générale a ses points critiques fixes. Arkiv för matematik, astronomi och fysik 17: 1–89.

    MATH  Google Scholar 

  • Malmquist, J. 1941. Sur les fonctions a un nombre fini de branches satisfaisant a une équation différentielle du premier ordre. Acta Mathematica 74: 175–196.

    MathSciNet  MATH  Google Scholar 

  • Marković, S. 1913. General Riccati equation of the first order. PhD thesis, in Serbian, University of Belgrade.

  • Nevanlinna, R. 1925. Zur Theorie der Meromorphen Funktionen. Acta Mathematica 46 (1–2): 1–99.

    MathSciNet  MATH  Google Scholar 

  • Nevanlinna, R. 1941. 1936. German original, Russian translation: Meromorphic functions.

  • Newton, I. 1670–1671. De methodis serierum et fluxionum. In: Newton, MWP, vol. 3, Chapter 1, pp. 32–254.

  • O’Connor, J.J. and E.F. Robertson. “Henry Burchard Fine”. MacTutor History of Mathematics archive, University of St Andrews.

  • Painlevé, P. 1887. Thèse: Sur les lignes singulières des fonctions analytiques. Paris.

  • Painlevé, P. 1888. Sur les lignes singulières des fonctions analytiques. Annales de la faculté des sciences de Toulouse\(1^{re}\) série, tome 2, B1–B130.

  • Painlevé, P. 1900. Mémoire sur les equations differentielles dont l’intégrale générale est uniforme. Bulletin de la Société Mathématique de France 28: 201–261.

    MathSciNet  MATH  Google Scholar 

  • Painlevé, P. 1902. Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme. Acta Mathematica 25: 1–85.

    MathSciNet  MATH  Google Scholar 

  • Petrovitch, M. 1899. Sur une propriété des équations différentielles intégrables à l’aide des fonctions méromorphes doublement périodiques. Acta Mathematica 22: 379–386.

    MathSciNet  MATH  Google Scholar 

  • Petrovitch, M. 2018. On a property of differential equations integrable using meromorphic double-periodic functions. Theoretical and Applied Mechanics 45(1):121–127. English translation of the above Petrovitch’s Acta Mathematica paper.

  • Petrowitch, M. 1894. Thèses: Sur les zéro et les infinis des intégrales des équations différentielles algébraiques. Paris: Propositions données par la Faculté.

    Google Scholar 

  • Petrowitch. 1999. Collected works of Mihailo Petrović, in 15 volumes. Belgarde: The State Textbook Company (in Serbian).

  • Petrowitch. 2019. Mihailo Petrović Alas: life work, times, Serbian Academy of Sciences and Arts, Editor-in-chief: Marko Andjelković Editors of publication: Stevan Pilipović, Gradimir V. Milovanović, Žarko Mijajlović, Belgrade.

  • Picard, E. 1879. Comptes rendus de l’Académie des Sciences 88:1024–1027 (89:662–665).

  • Picard, E. 1880. Annales Scientifiques de l’École Normale Supérieure 9: 145–166.

    Google Scholar 

  • Picard, E. 1889. Memoire sur la théorie des fonctions algébriques de deux variables. Journal de Mathématiques pures et appliquées 5: 135–320.

    MATH  Google Scholar 

  • Picard, E. 1908. Traité d’analyse, T. III: 378.

    Google Scholar 

  • Poincaré, H. 1885. Sur un théorème de M. Fuchsian, Acta Mathematics 7: 1–32.

    MathSciNet  MATH  Google Scholar 

  • Puiseux, V. 1850. Recherches sur les fonctions algébriques. Journal de mathématiques pures et appliquees 1re série Tome 15: 365–480.

    Google Scholar 

  • Ramis, J.-P. 1978. Dévissage Gevrey. Astérisque 59 (60): 173–204.

    MATH  Google Scholar 

  • Shimomura, S. 2003. Proofs of the Painlev’e property for all Painlevé equations. Japanese Journal of Mathematics (New Series) 29: 159–180.

    MathSciNet  MATH  Google Scholar 

  • Shimomura, S. 2007. A class of differential equations of PI-type with the quasi-Painlevé property. Annali di Matematica Pura ed Applicata 186: 267–280.

    MathSciNet  MATH  Google Scholar 

  • Shimomura, S. 2008. Nonlinear differential equations of second Painlevé type with the quasi-Painlevé property along a rectifiable curve. Tohoku Mathematical Journal 60: 581–595.

    MathSciNet  MATH  Google Scholar 

  • Sibuya Y. 1990. Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation. Transl. Math. Monographs, vol. 82. A.M.S.

  • Solomencev, E.D. 1984. Picard’s theorem Mathematical Enciclopedia, edited by I. M. Vinogradov, Soviet Enciclopedia 4: 286–287.

    Google Scholar 

  • Veblen, O. 1929. Henry Burchard Fine—In memoriam. Bulletin of the American Mathematical Society 35: 726–730.

    MathSciNet  MATH  Google Scholar 

  • Yosida, K. 1933. A generalization of a Malmquist’s theorem. Japanese Journal of Mathematics 3 (15): 253–256.

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Renat Gontsov for numerous valuable comments and suggestions. They are also grateful to Joseph Minich and Borislav Gajić for careful reading of the manuscript and their suggestions. The authors would like to thank Professor Susan Friedlander and the Bulletin of the AMS for kindly providing them the opportunity to feature this paper at the cover page of one of the forthcoming issues of BAMS [see Dragović and Goryuchkina (2020)]. The first author would like to thank Professors Božidar Jovanović, Zoran Petrić, and Vera Kovačević-Vujičić, the heads of the departments for Mechanics, for Mathematics, and for Applied Mathematics and Computer Science for the invitation to deliver a talk about the work of Mihailo Petrović at the first joint meeting of all three colloquia of the Mathematical Institute of the Serbian Academy of Sciences and Arts and to Academicians Stevan Pilipović and Gradimir Milovanović, the co-chairs of the public manifestation in Serbia “2018-the Year of Mihailo Petrović Alas” for the invitation to talk at the round table on May 22, 2018, at the Serbian Academy of Sciences and Arts, see Dragović (2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Dragović.

Additional information

Communicated by Jeremy Gray.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the first author has been partially supported by the Grant 174020 “Geometry and topology of manifolds, classical mechanics, and integrable dynamical systems” of the Ministry of Education and Sciences of Serbia and by the University of Texas at Dallas. The second author gratefully acknowledges the Grant PRAS-18-01 (PRAN 01 “Fundamental mathematics and its applications”).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragović, V., Goryuchkina, I. Polygons of Petrović and Fine, algebraic ODEs, and contemporary mathematics. Arch. Hist. Exact Sci. 74, 523–564 (2020). https://doi.org/10.1007/s00407-020-00250-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-020-00250-3

Navigation