Skip to main content
Log in

Endocannabinoid system alterations in schizophrenia: association with cannabis use and antipsychotic medication

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Determining peripheral modulation of the endocannabinoid system (ECS) may be important for differentiating individuals with schizophrenia. Such differentiation can also be extended to subgroups of individuals, those who use cannabis and antipsychotic medications, particularly those who are treatment resistant. Patients and controls were recruited from the outpatient clinic of the Psychosis Group of the University of São Paulo, Brazil. A final sample of 93 individuals was divided into 3 groups: patients with schizophrenia using clozapine (treatment-resistant) (n = 29), patients with schizophrenia using another antipsychotic (n = 31), and controls (n = 33). By measuring the proteins and metabolites involved in the ECS pathways in the peripheral blood, AEA (anandamide), 2-AG (2-arachidonoyl ethanolamine), and CB2 receptor (peripheral) were quantified. Individuals reporting lifetime cannabis use had lower 2-AG plasma levels (p = 0.011). Regarding the CB2 receptor, the values of patients with schizophrenia and controls were similar, but those of patients using antipsychotics other than clozapine differed (p = 0.022). In generalized linear models to control for confounders, the use of cannabis remained the only factor that significantly influenced 2-AG levels. The relationship for non-clozapine antipsychotics as the only factor related to CB2 changes was marginally significant. We found for the first time that cannabis use and non-clozapine antipsychotic medication are potentially involved in the modulation of the ECS, specifically influencing 2-AG endocannabinoid and CB2 receptor levels. More studies regarding the ECS are needed since it has been increasingly related to the physiopathology of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ferretjans R, de Campos SM, Ribeiro-Santos R et al (2014) Cognitive performance and peripheral endocannabinoid system receptor expression in schizophrenia. Schizophr Res 156(2–3):254–260

    Article  PubMed  Google Scholar 

  2. Leweke FM, Mueller JK, Lange B, Fritze S, Topor CE, Koethe D, Rohleder C (2018) Role of the endocannabinoid system in the pathophysiology of schizophrenia: implications for pharmacological intervention. CNS Drugs 32(7):605–619

    Article  PubMed  Google Scholar 

  3. Carlsson ML, Carlsson A, Nilsson M (2004) Schizophrenia: from dopamine to glutamate and back. Curr Med Chem 11(3):267–277

    Article  CAS  PubMed  Google Scholar 

  4. Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160(1):13–23

    Article  PubMed  Google Scholar 

  5. Zamberletti E, Rubino T, Parolaro D (2012) The endocannabinoid system and schizophrenia: integration of evidence. Curr Pharm Des 18:4980–4990

    Article  CAS  PubMed  Google Scholar 

  6. Fakhoury M (2017) Role of the endocannabinoid system in the pathophysiology of schizophrenia. Mol Neurobiol 54:768–778

    Article  CAS  PubMed  Google Scholar 

  7. Minichino A, Senior M, Brondino N et al (2019) Measuring disturbance of the endocannabinoid system in psychosis: a systematic review and meta-analysis. JAMA Psychiat 76:914

    Article  Google Scholar 

  8. Zamberletti E, Rubino T (2020) Impact of the endocannabinoid system manipulation on neurodevelopmental processes relevant to schizophrenia. Biol Psychiatry: Cogn Neurosci Neuroimaging 6:616–626

    PubMed  Google Scholar 

  9. Zuardi AW, Rodrigues NP, Silva AL, Bernardo SA, Hallak JEC, Guimarães FS, Crippa JAS (2017) Inverted U-shaped dose-response curve of the anxiolytic effect of cannabidiol during public speaking in real life. Front Pharmacol 11(8):259

    Article  Google Scholar 

  10. Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB1. Pharmacol Rev 62(4):588–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Katona I, Freund TF (2012) Multiple functions of endocannabinoid signaling in the brain. Annu Rev Neurosci 35:529–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cortez IL, Rodrigues-da-Silva N, Guimarães FS, Gomes FV (2020) Are CB2 receptors a new target for schizophrenia treatment? Front Psychiatry. 11:587154. https://doi.org/10.3389/fpsyt.2020.587154. (PMID: 33329132; PMCID: PMC7673393)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Leweke FM, Giuffrida A, Wurster U, Emrich HM, Piomelli D (1999) Elevated endogenous cannabinoids in schizophrenia. NeuroReport 10(8):1665–1669

    Article  CAS  PubMed  Google Scholar 

  14. Fernandez-Espejo E, Viveros MP, Nunez L et al (2009) Role of cannabis and endocannabinoids in the genesis of schizophrenia. Psychopharmacology 4:531–549

    Article  Google Scholar 

  15. Wong DF, Kuwabara H, Horti AG et al (2010) Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR. Neuroimage 4:1505–1513

    Article  Google Scholar 

  16. Volk DW (2017) Role of microglia disturbances and immune-related marker abnormalities in cortical circuitry dysfunction in schizophrenia. Neurobiol Dis 99:58–65

    Article  CAS  PubMed  Google Scholar 

  17. De Marchi N, De Petrocellis L, Orlando P, Daniele F, Fezza F, Di Marzo V (2003) Endocannabinoid signalling in the blood of patients with schizophrenia. Lipids Health Dis 2:5

    Article  PubMed  PubMed Central  Google Scholar 

  18. Leweke FM, Giuffrida A, Koethe D, Schreiber D, Nolden BM, Kranaster L et al (2007) Anandamide levels in cerebrospinal fluid of first-episode schizophrenic patients: impact of cannabis use. Schizophr Res 94(1–3):29–36

    Article  PubMed  Google Scholar 

  19. Giuffrida A, Leweke FM, Gerth CW, Schreiber D, Koethe D, Faulhaber J et al (2004) Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharmacology 29(11):2108–2114

    Article  CAS  PubMed  Google Scholar 

  20. de Campos-Carli SM, Araújo MS, de Oliveira-Silveira AC, de Rezende VB, Rocha NP, Ferretjans R, Ribeiro-Santos R, Teixeira-Carvalho A, Martins-Filho OA, Berk M, Salgado JV, Teixeira AL (2017) Cannabinoid receptors on peripheral leukocytes from patients with schizophrenia: evidence for defective immunomodulatory mechanisms. J Psychiatr Res 87:44–52

    Article  PubMed  Google Scholar 

  21. Bioque M, García-Bueno B, MacDowell KS, Meseguer A, Saiz PA, Parellada M et al (2013) Peripheral endocannabinoid system dysregulation in first-episode psychosis. Neuropsychopharmacology 38:2568–2577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferranti AS, Foster DJ (2022) Cannabinoid type-2 receptors: an emerging target for regulating schizophrenia-relevant brain circuits. Front Neurosci 16:925792. https://doi.org/10.3389/fnins.2022.925792

    Article  PubMed  PubMed Central  Google Scholar 

  23. Desfosses J, Stip E, Bentaleb LA, Lipp O, Chiasson JP, Furtos A et al (2012) Plasma endocannabinoid alterations in individuals with substance use disorder are dependent on the “mirror effect” of schizophrenia. Front Psychiatry 3:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C et al (2012) Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry 2:e94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Solinas M, Tanda G, Wertheim CE, Goldberg SR (2010) Dopaminergic augmentation of delta-9-tetrahydrocannabinol (THC) discrimination: possible involvement of D(2)-induced formation of anandamide. Psychopharmacology 209(2):191–202. https://doi.org/10.1007/s00213-010-1789-8. (Epub 2010 Feb 24. PMID: 20179908; PMCID: PMC2834964)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bisogno T, Hanus L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, Moriello AS, Davis JB, Mechoulam R, Di Marzo V (2001) Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 134(4):845–852. https://doi.org/10.1038/sj.bjp.0704327. (PMID: 11606325; PMCID: PMC1573017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muhl D, Kathmann M, Hoyer C, Kranaster L, Hellmich M, Gerth CW, Faulhaber J, Schlicker E, Leweke FM (2014) Increased CB2 mRNA and anandamide in human blood after cessation of cannabis abuse. Naunyn Schmiedebergs Arch Pharmacol 387(7):691–695. https://doi.org/10.1007/s00210-014-0984-2. (Epub 2014 May 2 PMID: 24788457)

    Article  CAS  PubMed  Google Scholar 

  28. Morgan CJ, Page E, Schaefer C, Chatten K, Manocha A, Gulati S, Curran HV, Brandner B, Leweke FM (2013) Cerebrospinal fluid anandamide levels, cannabis use and psychotic-like symptoms. Br J Psychiatry 202(5):381–382. https://doi.org/10.1192/bjp.bp.112.121178. (Epub 2013 Apr 11 PMID: 23580381)

    Article  PubMed  Google Scholar 

  29. Sempio C, Klawitter J, Jackson M, Freni F, Shillingburg R, Hutchison K, Bidwell LC, Christians U, Klawitter J (2021) Analysis of 14 endocannabinoids and endocannabinoid congeners in human plasma using column switching high-performance atmospheric pressure chemical ionization liquid chromatography-mass spectrometry. Anal Bioanal Chem 413(12):3381–3392. https://doi.org/10.1007/s00216-021-03280-0. (Epub 2021 Apr 5 PMID: 33817753)

    Article  CAS  PubMed  Google Scholar 

  30. Borgan F, Veronese M, Reis Marques T, Lythgoe DJ, Howes O (2021) Association between cannabinoid 1 receptor availability and glutamate levels in healthy controls and drug-free patients with first episode psychosis: a multi-modal PET and 1H-MRS study. Eur Arch Psychiatry Clin Neurosci 271(4):677–687. https://doi.org/10.1007/s00406-020-01191-2. (Epub 2020 Sep 28. PMID: 32986150; PMCID: PMC8119269)

    Article  PubMed  Google Scholar 

  31. Ibarra-Lecue I, Unzueta-Larrinaga P, Barrena-Barbadillo R et al (2022) Cannabis use selectively modulates circulating biomarkers in the blood of schizophrenia patients. Addict Biol 27(6):e13233. https://doi.org/10.1111/adb.13233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schulz P, Hryhorowicz S, Rychter AM, Zawada A, Słomski R, Dobrowolska A, Krela-Kazmierczak I (2021) What role does the endocannabinoid system play in the pathogenesis of obesity? Nutrients 13:373. https://doi.org/10.3390/nu13020373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Patil AS, Mahajan UB, Agrawal YO, Patil KR, Patil CR, Ojha S, Sharma C, Goyal SN (2020) Plant-derived natural therapeutics targeting cannabinoid receptors in metabolic syndrome and its complications: a review. Biomed Pharmacother 132:110889. https://doi.org/10.1016/j.biopha.2020.110889. (Epub 2020 Oct 28 PMID: 33113429)

    Article  CAS  PubMed  Google Scholar 

  34. Shrestha N, Cuffe JSM, Hutchinson DS, Headrick JP, Perkins AV, McAinch AJ, Hryciw DH (2018) Peripheral modulation of the endocannabinoid system in metabolic disease. Drug Discov Today. https://doi.org/10.1016/j.drudis.2018.01.029

    Article  PubMed  Google Scholar 

  35. Alvheim AR et al (2012) Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity. Obesity 20:1984–1994

    Article  CAS  PubMed  Google Scholar 

  36. Bluher M et al (2006) Dysregulation of the peripheral and adipose tissue endocannabinoid system in human abdominal obesity. Diabetes 55:3053–3060

    Article  PubMed  Google Scholar 

  37. Blanton HL, Barnes RC, McHann MC, Bilbrey JA, Wilkerson JL, Guindon J (2021) Sex differences and the endocannabinoid system in pain. Pharmacol Biochem Behav 202:173107. https://doi.org/10.1016/j.pbb.2021.173107. (Epub 2021 Jan 12. PMID: 33444598; PMCID: PMC8216879)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Craft RM, Marusich JA, Wiley JL (2013) Sex differences in cannabinoid pharmacology: a reflection of differences in the endocannabinoid system? Life Sci 92(8–9):476–481. https://doi.org/10.1016/j.lfs.2012.06.009. (Epub 2012 Jun 20. PMID: 22728714; PMCID: PMC3492530)

    Article  CAS  PubMed  Google Scholar 

  39. Meccariello R, Battista N, Bradshaw HB, Wang H (2014) Updates in reproduction coming from the endocannabinoid system. Int J Endocrinol. 2014:412354. https://doi.org/10.1155/2014/412354. (Epub 2014 Jan 16. PMID: 24550985; PMCID: PMC3914453)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Levine A, Liktor-Busa E, Lipinski AA, Couture S, Balasubramanian S, Aicher SA, Langlais PR, Vanderah TW, Largent-Milnes TM (2021) Sex differences in the expression of the endocannabinoid system within V1M cortex and PAG of Sprague Dawley rats. Biol Sex Differ 12(1):60. https://doi.org/10.1186/s13293-021-00402-2. (PMID: 34749819; PMCID: PMC8577021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Côté M, Matias I, Lemieux I et al (2007) Circulating endocannabinoid levels, abdominal adiposity and related cardiometabolic risk factors in obese men. Int J Obes 31(4):692–699

    Article  Google Scholar 

  42. Abdulnour J et al (2014) Circulating endocannabinoids in insulin sensitive vs. insulin resistant obese postmenopausal women. A MONET group study. Obesity 22:211–216

    Article  CAS  PubMed  Google Scholar 

  43. American Psychiatric Association DSM-5 Task Force (2013) Diagnostic and statistical manual of mental disorders: DSM-5™, 5th edn. American Psychiatric Publishing Inc

    Book  Google Scholar 

  44. Jobson KO, Potter WZ (1995) International psychopharmacology algorithm project report. Psychopharmacol Bull 31(3):457–459 (491-500. PMID: 8668749)

    CAS  PubMed  Google Scholar 

  45. Loch AA, Chianca C, Alves TM, Freitas EL, Hortêncio L, Andrade JC, van de Bilt MT, Fontoni MR, Serpa MH, Gattaz WF, Rössler W (2017) Poverty, low education, and the expression of psychotic-like experiences in the general population of São Paulo Brazil. Psychiatry Res 253:182–188. https://doi.org/10.1016/j.psychres.2017.03.052. (Epub 2017 Mar 31 PMID: 28388455)

    Article  PubMed  Google Scholar 

  46. Kay SR, Fiszbein A, Opler LA (1987) The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276

    Article  CAS  PubMed  Google Scholar 

  47. Garst C, Fulmer M, Thewke D, Brown S (2016) Optimized extraction of 2-arachidonyl glycerol and anandamide from aortic tissue and plasma for quantification by LC-MS/MS. Eur J Lipid Sci Technol 118:814–820

    Article  CAS  PubMed  Google Scholar 

  48. Dócs K, Mészár Z, Gonda S, Kiss-Szikszai A, Holló K, Antal M et al (2017) The ratio of 2-AG to its isomer 1-AG as an intrinsic fine-tuning mechanism of CB1 receptor activation. Front Cell Neurosci 11:39

    Article  PubMed  PubMed Central  Google Scholar 

  49. SPSS I (2012) IBM SPSS statistics Vers 21. Inter Business Machines Corp, Boston

    Google Scholar 

  50. Reuter AR, Bumb JM, Mueller JK, Rohleder C, Pahlisch F, Hanke F, Arens E, Leweke FM, Koethe D, Schwarz E (2017) Association of anandamide with altered binocular depth inversion illusion in schizophrenia. World J Biol Psychiatry 18:483–488

    Article  PubMed  Google Scholar 

  51. Ishiguro H, Horiuchi Y, Tabata K, Liu Q-R, Arinami T, Onaivi ES (1836) Cannabinoid CB2 receptor gene and environmental interaction in the development of psychiatric disorders. Molecules 2018:23. https://doi.org/10.3390/molecules23081836

    Article  CAS  Google Scholar 

  52. Banaszkiewicz I, Biala G, Kruk-Slomka M (2020) Contribution of CB2 receptors in schizophrenia-related symptoms in various animal models: short review. Neurosci Biobehav Rev 114:158–171. https://doi.org/10.1016/j.neubiorev.2020.04.020. (Epub 2020 May 11 PMID: 32437746)

    Article  CAS  PubMed  Google Scholar 

  53. Legge SE, Jones HJ, Kendall KM, Pardiñas AF, Menzies G, Bracher-Smith M, Escott-Price V, Rees E, Davis KAS, Hotopf M, Savage JE, Posthuma D, Holmans P, Kirov G, Owen MJ, O’Donovan MC, Zammit S, Walters JTR (2019) Association of genetic liability to psychotic experiences with neuropsychotic disorders and traits. JAMA Psychiat 76(12):1256–1265. https://doi.org/10.1001/jamapsychiatry.2019.2508. (PMID: 31553412; PMCID: PMC6764002)

    Article  Google Scholar 

  54. Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, Samara M, Barbui C, Engel RR, Geddes JR, Kissling W, Stapf MP, Lässig B, Salanti G, Davis JM (2013) Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet 382(9896):951–962. https://doi.org/10.1016/S0140-6736(13)60733-3. (Epub 2013 Jun 27. Erratum in: Lancet. 2013 Sep 14;382(9896):940. PMID: 23810019)

    Article  CAS  PubMed  Google Scholar 

  55. Koethe D, Pahlisch F, Hellmich M, Rohleder C, Mueller JK, Meyer-Lindenberg A et al (2019) Familial abnormalities of endocannabinoid signaling in schizophrenia. World J Biol Psychiatry 20:117–125

    Article  PubMed  Google Scholar 

  56. Potvin S, Kouassi E, Lipp O, Bouchard RH, Roy MA, Demers MF, Gendron A, Astarita G, Piomelli D, Stip E (2008) Endogenous cannabinoids in patients with schizophrenia and substance use disorder during quetiapine therapy. J Psychopharmacol 22(3):262–269

    Article  CAS  PubMed  Google Scholar 

  57. Wang D, Sun X, Yan J, Ren B, Cao B, Lu Q, Liu Y, Wang J (2018) Alterations of eicosanoids and related mediators in patients with schizophrenia. J Psychiatr Res 102:168–178

    Article  PubMed  Google Scholar 

  58. Potvin S, Mahrouche L, Assaf R, Chicoine M, Giguère C-E, Furtos A, Godbout R (2020) Peripheral endogenous cannabinoid levels are increased in schizophrenia patients evaluated in a psychiatric emergency setting. Front Psychiatry 11:628

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dlugos A, Childs E, Stuhr KL, Hillard CJ, de Wit H (2012) Acute stress increases circulating anandamide and other N-acylethanolamines in healthy humans. Neuropsychopharmacology 37:2416–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Appiah-Kusi E, Wilson R, Colizzi M, Foglia E, Klamerus E, Caldwell A, Bossong MG, McGuire P, Bhattacharyya S (2020) Childhood trauma and being at-risk for psychosis are associated with higher peripheral endocannabinoids. Psychol Med 50(11):1862–1871. https://doi.org/10.1017/S0033291719001946. (Epub 2019 Aug 19 PMID: 31422779)

    Article  CAS  PubMed  Google Scholar 

  61. Herrera-Imbroda J, Flores-López M, Ruiz-Sastre P, Gómez-Sánchez-Lafuente C, Bordallo-Aragón A, Rodríguez-de-Fonseca F, Mayoral-Cleríes F (2023) The inflammatory signals associated with psychosis: impact of comorbid drug abuse. Biomedicines 11:454. https://doi.org/10.3390/biomedicines11020454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dickens AM, Borgan F, Laurikainen H, Lamichhane S, Marques T, Rönkkö T et al (2019) Links between central CB1-receptor availability and peripheral endocannabinoids in patients with first episode psychosis. bioRxiv. 21:664086

    Google Scholar 

  63. Koethe D, Giuffrida A, Schreiber D, Hellmich M, Schultze- Lutter F, Ruhrmann S et al (2009) Anandamide elevation in cerebrospinal fluid in initial prodromal states of psychosis. Br J Psychiatry 194(4):371–372

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Laboratory of Neuroscience LIM27 receives financial support from the Associacao Beneficente Alzira Denise Hertzog da Silva.

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (Grant Number 2014/50873-3), Brazil. The sponsor had no influence on the design of the study; on the collection, analysis and interpretation of data; on the writing of the manuscript; or on the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the study and wrote the protocol. Author NMHOS managed the literature searches and wrote the first draft of the manuscript, author AAL undertook the statistical analysis. All authors contributed to and have approved the final manuscript.

Corresponding author

Correspondence to Natalia Mansur Haddad.

Ethics declarations

Conflict of interest

All authors declare they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddad, N.M., De Jesus, L.P., Serpa, M. et al. Endocannabinoid system alterations in schizophrenia: association with cannabis use and antipsychotic medication. Eur Arch Psychiatry Clin Neurosci (2024). https://doi.org/10.1007/s00406-024-01788-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00406-024-01788-x

Keywords

Navigation