Skip to main content
Log in

Positive association between increased homocysteine and deficit syndrome in Chinese patients with chronic schizophrenia: a large-scale cross-sectional study

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Emerging studies indicate that oxidative stress may contribute to deficit syndrome (DS) in patients with schizophrenia. Homocysteine (Hcy) is a well-known marker and mediator of oxidative stress that exhibits tight associations with schizophrenia. However, no previous studies have assessed the relationship of DS with Hcy. This study evaluated the prevalence, clinical characteristics, and association of DS with Hcy in 491 patients with schizophrenia. Plasma levels of Hcy and other metabolic parameters were measured. Positive and Negative Syndrome Scale and the proxy scale for deficit syndrome were employed to assess psychiatric symptoms and DS. The logistic regression model was conducted to assess independent factors associated with DS, and the Area Under the Curve (AUC) was used to assess the performance of our model. There was a high incidence of hyperhomocysteinemia (58.8%) and DS (24.4%). Plasma Hcy levels were significantly higher in patients with DS. Age, Hcy levels, and psychiatric symptoms were independently associated with DS. The combination of these variables perfectly differentiated DS and non-DS patients with an AUC value of 0.89. Our study suggests that elevated Hcy levels may be related to DS. Routine monitoring of Hcy is essential and may facilitate early detection of DS in patients with schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, Xiangyang Zhang, upon reasonable request.

References

  1. López-Díaz Á, Menéndez-Sampil C, Pérez-Romero A et al (2020) Characterization of deficit schizophrenia and reliability of the bidimensional model of its negative symptomatology. Nord J Psychiatry 74:400–406. https://doi.org/10.1080/08039488.2020.1736151

    Article  PubMed  Google Scholar 

  2. Bora E, Binnur Akdede B, Alptekin K (2017) Neurocognitive impairment in deficit and non-deficit schizophrenia: a meta-analysis. Psychol Med 47:2401–2413. https://doi.org/10.1017/S0033291717000952

    Article  CAS  PubMed  Google Scholar 

  3. Zhu X, Chen D, Xiu M et al (2022) Serum BDNF levels, glycolipid metabolism in deficit schizophrenia: a case-control study. Asian J Psychiatry 69:103003. https://doi.org/10.1016/j.ajp.2022.103003

    Article  Google Scholar 

  4. López-Díaz Á, Lara I, Lahera G (2018) Is the prevalence of the deficit syndrome in schizophrenia higher than estimated? Results of a meta-analysis. Psychiatry Investig 15:94–98. https://doi.org/10.4306/pi.2018.15.1.94

    Article  PubMed  PubMed Central  Google Scholar 

  5. Strauss GP, Harrow M, Grossman LS, Rosen C (2010) Periods of recovery in deficit syndrome schizophrenia: a 20-year multi-follow-up longitudinal study. Schizophr Bull 36:788–799. https://doi.org/10.1093/schbul/sbn167

    Article  PubMed  Google Scholar 

  6. Liu J, Tian Y, Wei S et al (2022) Association of empathy with clinical symptoms and cognitive function in Chinese chronic schizophrenia patients with and without deficit syndrome. Prog Neuropsychopharmacol Biol Psychiatry 119:110592. https://doi.org/10.1016/j.pnpbp.2022.110592

    Article  PubMed  Google Scholar 

  7. Sum MY, Tay KH, Sengupta S, Sim K (2018) Neurocognitive functioning and quality of life in patients with and without deficit syndrome of schizophrenia. Psychiatry Res 263:54–60. https://doi.org/10.1016/j.psychres.2018.02.025

    Article  PubMed  Google Scholar 

  8. Köşger F, Yiğitaslan S, Eşsizoğlu A et al (2020) Inflammation and oxidative stress in deficit schizophrenia. Noro Psikiyatr Ars 57:303–307. https://doi.org/10.29399/npa.24966

    Article  PubMed  PubMed Central  Google Scholar 

  9. Maes M, Sirivichayakul S, Matsumoto AK et al (2020) Lowered antioxidant defenses and increased oxidative toxicity are hallmarks of deficit schizophrenia: a nomothetic network psychiatry approach. Mol Neurobiol 57:4578–4597. https://doi.org/10.1007/s12035-020-02047-5

    Article  CAS  PubMed  Google Scholar 

  10. Albayrak Y, Ünsal C, Beyazyüz M et al (2013) Reduced total antioxidant level and increased oxidative stress in patients with deficit schizophrenia: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 45:144–149. https://doi.org/10.1016/j.pnpbp.2013.04.020

    Article  CAS  PubMed  Google Scholar 

  11. Maes M, Kanchanatawan B, Sirivichayakul S, Carvalho AF (2019) In schizophrenia, deficits in natural IgM isotype antibodies including those directed to malondialdehyde and azelaic acid strongly predict negative symptoms, neurocognitive impairments, and the deficit syndrome. Mol Neurobiol 56:5122–5135. https://doi.org/10.1007/s12035-018-1437-6

    Article  CAS  PubMed  Google Scholar 

  12. Karolczak K, Watala C (2021) Melatonin as a reducer of neuro- and vasculotoxic oxidative stress induced by homocysteine. Antioxidants (Basel) 10:1178. https://doi.org/10.3390/antiox10081178

    Article  CAS  PubMed  Google Scholar 

  13. Yang M, Zhou X, Tan X et al (2022) The status of oxidative stress in patients with alcohol dependence: a meta-analysis. Antioxidants (Basel) 11:1919. https://doi.org/10.3390/antiox11101919

    Article  CAS  PubMed  Google Scholar 

  14. Ma YY, Shek CC, Wong MC et al (2009) Homocysteine level in schizophrenia patients. Aust N Z J Psychiatry 43:760–765. https://doi.org/10.1080/00048670903001935

    Article  PubMed  Google Scholar 

  15. Yang Y, Wang J, Xiong Z et al (2021) Prevalence and clinical demography of hyperhomocysteinemia in Han Chinese patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 271:759–765. https://doi.org/10.1007/s00406-020-01150-x

    Article  PubMed  Google Scholar 

  16. Fraguas D, Díaz-Caneja CM, Ayora M et al (2019) Oxidative stress and inflammation in first-episode psychosis: a systematic review and meta-analysis. Schizophr Bull 45:742–751. https://doi.org/10.1093/schbul/sby125

    Article  PubMed  Google Scholar 

  17. Ermakov EA, Dmitrieva EM, Parshukova DA et al (2021) Oxidative stress-related mechanisms in schizophrenia pathogenesis and new treatment perspectives. Oxid Med Cell Longev 2021:8881770. https://doi.org/10.1155/2021/8881770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang X, Yang H, Li N et al (2022) Increased serum homocysteine in first episode and drug-naïve individuals with schizophrenia: sex differences and correlations with clinical symptoms. BMC Psychiatry 22:759. https://doi.org/10.1186/s12888-022-04416-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trześniowska-Drukała B, Kalinowska S, Safranow K et al (2019) Evaluation of hyperhomocysteinemia prevalence and its influence on the selected cognitive functions in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 95:109679. https://doi.org/10.1016/j.pnpbp.2019.109679

    Article  CAS  PubMed  Google Scholar 

  20. Regland B, Johansson BV, Grenfeldt B et al (1995) Homocysteinemia is a common feature of schizophrenia. J Neural Transm 100:165–169. https://doi.org/10.1007/BF01271539

    Article  CAS  Google Scholar 

  21. Zhou S, Huang Y, Feng Y et al (2021) Association between plasma homocysteine levels and cognitive deficits in Han Chinese patients with schizophrenia across age groups. Sci Rep 11:19716. https://doi.org/10.1038/s41598-021-99239-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li H, Li H, Zhu Z et al (2023) Association of serum homocysteine levels with intestinal flora and cognitive function in schizophrenia. J Psychiatr Res 159:258–265. https://doi.org/10.1016/j.jpsychires.2023.01.045

    Article  PubMed  Google Scholar 

  23. Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276. https://doi.org/10.1093/schbul/13.2.261

    Article  CAS  PubMed  Google Scholar 

  24. Goetz RR, Corcoran C, Yale S et al (2007) Validity of a “proxy” for the deficit syndrome derived from the Positive And Negative Syndrome Scale (PANSS). Schizophr Res 93:169–177. https://doi.org/10.1016/j.schres.2007.02.018

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang Y, Wu K, Li H et al (2020) Homocysteine level, body mass index and clinical correlates in Chinese Han patients with schizophrenia. Sci Rep 10:16119. https://doi.org/10.1038/s41598-020-72934-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang B, Fan S, Zhi X et al (2014) Prevalence of hyperhomocysteinemia in China: a systematic review and meta-analysis. Nutrients 7:74–90. https://doi.org/10.3390/nu7010074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou Y, Peng P, Yuan N et al (2023) Suicidal ideation in Chinese patients with chronic schizophrenia: prevalence, clinical correlates, and relationship with alexithymia. Eur Arch Psychiatry Clin Neurosci. https://doi.org/10.1007/s00406-023-01630-w

    Article  PubMed  Google Scholar 

  28. Peng P, Wang Q, Ren H et al (2023) Association between thyroid hormones and comorbid psychotic symptoms in patients with first-episode and drug-naïve major depressive disorder. Psychiatry Res 320:115052. https://doi.org/10.1016/j.psychres.2023.115052

    Article  CAS  PubMed  Google Scholar 

  29. Peng P, Wang Q, Zhou Y et al (2023) Association of subclinical hypothyroidism with metabolic syndrome and its components among outpatients with first-episode drug-naïve major depressive disorder: a large-scale cross-sectional study. Eur Arch Psychiatry Clin Neurosci. https://doi.org/10.1007/s00406-023-01588-9

    Article  PubMed  Google Scholar 

  30. Liu J, Wang D, Zhou H et al (2021) Deficit syndrome in Chinese patients with first-episode drug naïve schizophrenia: prevalence, demographic and clinical characteristics. Asian J Psychiatr 65:102861. https://doi.org/10.1016/j.ajp.2021.102861

    Article  PubMed  Google Scholar 

  31. Liu J, He J, Cheng M et al (2019) Prevalence, sociodemographic, and clinical correlates of older Chinese patients with deficit schizophrenia. J Geriatr Psychiatry Neurol 32:298–303. https://doi.org/10.1177/0891988719870321

    Article  PubMed  Google Scholar 

  32. Yu J, Xue R, Wang Q et al (2022) The effects of plasma homocysteine level on the risk of three major psychiatric disorders: a Mendelian randomization study. Front Psychiatry 13:841429. https://doi.org/10.3389/fpsyt.2022.841429

    Article  PubMed  PubMed Central  Google Scholar 

  33. Al-Kuraishy HM, Al-Gareeb AI, Elewa YHA et al (2023) Parkinson’s disease risk and hyperhomocysteinemia: the possible link. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-023-01350-8

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bhatia P, Singh N (2015) Homocysteine excess: delineating the possible mechanism of neurotoxicity and depression. Fundam Clin Pharmacol 29:522–528. https://doi.org/10.1111/fcp.12145

    Article  CAS  PubMed  Google Scholar 

  35. Ganguly P, Alam SF (2015) Role of homocysteine in the development of cardiovascular disease. Nutr J 14:6. https://doi.org/10.1186/1475-2891-14-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim J, Kim H, Roh H, Kwon Y (2018) Causes of hyperhomocysteinemia and its pathological significance. Arch Pharm Res 41:372–383. https://doi.org/10.1007/s12272-018-1016-4

    Article  CAS  PubMed  Google Scholar 

  37. Yadav U, Kumar P, Gupta S, Rai V (2016) Role of MTHFR C677T gene polymorphism in the susceptibility of schizophrenia: an updated meta-analysis. Asian J Psychiatry 20:41–51. https://doi.org/10.1016/j.ajp.2016.02.002

    Article  Google Scholar 

  38. Sharma M, Tiwari M, Tiwari RK (2015) Hyperhomocysteinemia: impact on neurodegenerative diseases. Basic Clin Pharmacol Toxicol 117:287–296. https://doi.org/10.1111/bcpt.12424

    Article  CAS  PubMed  Google Scholar 

  39. Song X, Fan X, Li X et al (2014) Serum levels of BDNF, folate and homocysteine: in relation to hippocampal volume and psychopathology in drug naïve, first episode schizophrenia. Schizophr Res 159:51–55. https://doi.org/10.1016/j.schres.2014.07.033

    Article  PubMed  Google Scholar 

  40. Hei G, Pang L, Chen X et al (2014) Association of serum folic acid and homocysteine levels and 5, 10-methylenetetrahydrofolate reductase gene polymorphism with schizophrenia. Zhonghua Yi Xue Za Zhi 94:2897–2901

    CAS  PubMed  Google Scholar 

  41. Wang S-D, Wang X, Zhao Y et al (2022) Homocysteine-induced disturbances in DNA methylation contribute to development of stress-associated cognitive decline in rats. Neurosci Bull 38:887–900. https://doi.org/10.1007/s12264-022-00852-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Akyol ES, Albayrak Y, Beyazyüz M et al (2015) Decreased serum levels of brain-derived neurotrophic factor in schizophrenic patients with deficit syndrome. Neuropsychiatr Dis Treat 11:865–872. https://doi.org/10.2147/NDT.S79444

    Article  PubMed  PubMed Central  Google Scholar 

  43. Valiente-Gómez A, Amann BL, Mármol F et al (2014) Comparison of serum BDNF levels in deficit and nondeficit chronic schizophrenia and healthy controls. Psychiatry Res 220:197–200. https://doi.org/10.1016/j.psychres.2014.08.039

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge all the participants.

Funding

This work was supported by the CAS Pioneer Hundred Talents Program and the National Natural Science Foundation of China (81371477). These sources had no further role in this study design, in the data collection and analysis, in the writing of the report, and in the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Contributions

PP: formal analysis, writing—original draft. DW: formal analysis, writing—original draft. QW: writing—review and editing. YZ: writing—review and editing. YH: writing—review and editing. SC: writing—review and editing. QW: writing—review and editing. TL: conceptualization, writing—review and editing. XZ: conceptualization, writing—review and editing.

Corresponding authors

Correspondence to Tieqiao Liu or Xiangyang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Institutional Review Board of the Chinese Academy of Sciences (H18031).

Consent to participate

Informed consent was obtained from all participants.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, P., Wang, D., Wang, Q. et al. Positive association between increased homocysteine and deficit syndrome in Chinese patients with chronic schizophrenia: a large-scale cross-sectional study. Eur Arch Psychiatry Clin Neurosci (2023). https://doi.org/10.1007/s00406-023-01706-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00406-023-01706-7

Keywords

Navigation