Skip to main content

Advertisement

Log in

Serum zonulin and claudin-5 levels in patients with schizophrenia

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The aim of this research was to assess whether or not changes in the concentrations of serum zonulin and claudin-5 in patients with schizophrenia could have etiopathogenetic importance. In previous studies, the data regarding the relationship between intestinal and blood–brain barrier (BBB) permeability and the etiology of schizophrenia have been limited. In this study, we assumed that there may be a difference in serum zonulin and claudin-5 levels in patients with schizophrenia, which may affect the severity of the disease. Fifty schizophrenia patients and 50 healthy controls were included in this study. The patients were administered the Positive Symptoms Assessment Scale (SAPS) and Negative Symptoms Assessment Scale (SANS) to determine the severity of symptoms. Venous blood samples were collected, and the serum zonulin and claudin-5 levels were measured. The mean serum zonulin levels were significantly increased in patients with schizophrenia when compared to the control group. Serum claudin-5 levels were decreased in the schizophrenia patients when compared to the controls. The present study indicates that zonulin is increased and claudin-5 is decreased in patients with schizophrenia. These findings extend the existing knowledge on the dysregulation of intestinal permeability, especially zonulin, and BBB, especially claudin-5, and show that both proteins may be involved in the etiopathogenesis of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andreasen NC (1990) Methods for assessing positive and negative symptoms. Mod Probl Pharmacopsychiatry 24:73–88. https://doi.org/10.1159/000418013

    Article  CAS  PubMed  Google Scholar 

  2. Arinami T (2006) Analyses of the associations between the genes of 22q11 deletion syndrome and schizophrenia. J Hum Genet 51:1037–1045. https://doi.org/10.1007/s10038-006-0058-5

    Article  CAS  PubMed  Google Scholar 

  3. Asmar RE, Panigrahi P, Bamford P et al (2002) Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology 123:1607–1615. https://doi.org/10.1053/gast.2002.36578

    Article  CAS  PubMed  Google Scholar 

  4. Barber GS, Sturgeon C, Fasano A et al (2019) Elevated zonulin, a measure of tight-junction permeability, may be implicated in schizophrenia. Schizophr Res 211:111–112. https://doi.org/10.1016/j.schres.2019.07.006

    Article  PubMed  Google Scholar 

  5. Bassett AS, Chow EWC (2008) Schizophrenia and 22q11.2 deletion syndrome. Curr Psychiatry Rep 10:148–157

    Article  Google Scholar 

  6. Drago S, El Asmar R, Di Pierro M et al (2006) Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 41:408–419. https://doi.org/10.1080/00365520500235334

    Article  CAS  PubMed  Google Scholar 

  7. Erkoç Ş, Arkonac O, Ataklı C, Özmen E (1991) Pozitif Semptomları Değerlendirme Ölçeğinin Güvenilirliği ve Geçerliliği. Dusunen Adam 4:20–24

    Google Scholar 

  8. Erkoç Ş, Arkonac O, Ataklı C, Özmen E (1991) Negatif Semptomları Değerlendirme Ölçeğinin Güvenilirliği ve Geçerliliği. Dusunen Adam 4:14–15

    Google Scholar 

  9. Esnafoglu E, Cırrık S, Ayyıldız SN et al (2017) Increased serum zonulin levels as an intestinal permeability marker in autistic subjects. J Pediatr 188:240–244. https://doi.org/10.1016/j.jpeds.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  10. Fasano A (2011) Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 91:151–175. https://doi.org/10.1152/physrev.00003.2008

    Article  CAS  PubMed  Google Scholar 

  11. Fasano A (2012) Zonulin, regulation of tight junctions, and autoimmune diseases. Ann NY Acad Sci 1258:25–33. https://doi.org/10.1111/j.1749-6632.2012.06538.x

    Article  CAS  PubMed  Google Scholar 

  12. Fasano A, Hill I (2017) Serum Zonulin, Gut Permeability, and the pathogenesis of autism spectrum disorders: cause, effect, or an epiphenomenon? J Pediatr 188:15–17. https://doi.org/10.1016/j.jpeds.2017.05.038

    Article  CAS  PubMed  Google Scholar 

  13. Fasano A, Uzzau S, Fiore C, Margaretten K (1997) The enterotoxic effect of zonula occludens toxin on rabbit small intestine involves the paracellular pathway. Gastroenterology 112:839–846. https://doi.org/10.1053/gast.1997.v112.pm9041245

    Article  CAS  PubMed  Google Scholar 

  14. Greene C, Hanley N, Campbell M (2019) Claudin-5: gatekeeper of neurological function. Fluids Barriers CNS 16:3. https://doi.org/10.1186/s12987-019-0123-z

    Article  PubMed  PubMed Central  Google Scholar 

  15. Greene C, Kealy J, Humphries MM et al (2018) Dose-dependent expression of claudin-5 is a modifying factor in schizophrenia. Mol Psychiatry 23:2156–2166. https://doi.org/10.1038/mp.2017.156

    Article  CAS  PubMed  Google Scholar 

  16. Harrison PJ, Owen MJ (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 361:417–419. https://doi.org/10.1016/S0140-6736(03)12379-3

    Article  CAS  PubMed  Google Scholar 

  17. Ishiguro H, Imai K, Koga M et al (2008) Replication study for associations between polymorphisms in the CLDN5 and DGCR2 genes in the 22q11 deletion syndrome region and schizophrenia. Psychiatr Genet 18:255–256

    Article  Google Scholar 

  18. Işık Ü, Aydoğan Avşar P, Aktepe E et al (2020) Serum zonulin and claudin-5 levels in children with obsessive–compulsive disorder. Nord J Psychiatry. https://doi.org/10.1080/08039488.2020.1715474

    Article  PubMed  Google Scholar 

  19. Julio-Pieper M, Bravo JA, Aliaga E et al (2014) Review article: intestinal barrier dysfunction and central nervous system disorders–a controversial association. Aliment Pharmacol Ther 40:1187–1201

    Article  CAS  Google Scholar 

  20. Keaney J, Walsh DM, O’Malley T et al (2015) Autoregulated paracellular clearance of amyloid-β across the blood-brain barrier. Sci Adv 1:e1500472. https://doi.org/10.1126/sciadv.1500472

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kelly CP, Green PHR, Murray JA et al (2013) Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment Pharmacol Ther 37:252–262. https://doi.org/10.1111/apt.12147

    Article  CAS  PubMed  Google Scholar 

  22. Kılıç F, Işık Ü, Demirdaş A et al (2020) Serum zonulin and claudin-5 levels in patients with bipolar disorder. J Affect Disord 266:37–42. https://doi.org/10.1016/j.jad.2020.01.117

    Article  CAS  PubMed  Google Scholar 

  23. Leffler DA, Kelly CP, Abdallah HZ et al (2012) a randomized, double-blind study of larazotide acetate to prevent the activation of celiac disease during gluten challenge. Am J Gastroenterol 107:1554–1562. https://doi.org/10.1038/ajg.2012.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Linninge C, Jönsson P, Bolinsson H et al (2018) Effects of acute stress provocation on cortisol levels, zonulin and inflammatory markers in low- and high-stressed men. Biol Psychol 138:48–55. https://doi.org/10.1016/J.BIOPSYCHO.2018.08.013

    Article  PubMed  Google Scholar 

  25. Maes M, Sirivichayakul S, Kanchanatawan B, Vodjani A (2019) Upregulation of the intestinal paracellular pathway with breakdown of tight and adherens junctions in deficit schizophrenia. Mol Neurobiol. https://doi.org/10.1007/s12035-019-1578-2

    Article  PubMed  PubMed Central  Google Scholar 

  26. McDonald C, Murray RM (2000) Early and late environmental risk factors for schizophrenia. Brain Res Brain Res Rev 31(2–3):130–137. https://doi.org/10.1016/s0165-0173(99)00030-2

    Article  CAS  PubMed  Google Scholar 

  27. McGrath J, Saha S, Chant D, Welham J (2008) Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 30:67–76. https://doi.org/10.1093/epirev/mxn001

    Article  PubMed  Google Scholar 

  28. Menard C, Pfau ML, Hodes GE et al (2017) Social stress induces neurovascular pathology promoting depression. Nat Neurosci 20:1752–1760. https://doi.org/10.1038/s41593-017-0010-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moreno-Navarrete JM, Sabater M, Ortega F et al (2012) Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance. PLoS ONE 7:e37160. https://doi.org/10.1371/journal.pone.0037160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nishiura K, Ichikawa-Tomikawa N, Sugimoto K et al (2017) PKA activation and endothelial claudin-5 breakdown in the schizophrenic prefrontal cortex. Oncotarget 8:93382–93391. https://doi.org/10.18632/oncotarget.21850

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nitta T, Hata M, Gotoh S et al (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660. https://doi.org/10.1083/jcb.200302070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Omidinia E, Mashayekhi Mazar F, Shahamati P et al (2014) Polymorphism of the CLDN5 gene and schizophrenia in an Iranian population. Iran J Public Health 43:79–83

    PubMed  PubMed Central  Google Scholar 

  33. Özyurt G, Öztürk Y, Appak YÇ et al (2018) Increased zonulin is associated with hyperactivity and social dysfunctions in children with attention deficit hyperactivity disorder. Compr Psychiatry 87:138–142. https://doi.org/10.1016/j.comppsych.2018.10.006

    Article  PubMed  Google Scholar 

  34. Rahman MT, Ghosh C, Hossain M et al (2018) IFN-γ IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: relevance for neuro-inflammatory diseases. Biochem Biophys Res Commun 507:274–279. https://doi.org/10.1016/j.bbrc.2018.11.021

    Article  CAS  PubMed  Google Scholar 

  35. Severance EG, Dickerson FB, Yolken RH (2018) Autoimmune phenotypes in schizophrenia reveal novel treatment targets. Pharmacol Ther 189:184–198. https://doi.org/10.1016/j.pharmthera.2018.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun Z-Y, Wei J, Xie L et al (2004) The CLDN5 locus may be involved in the vulnerability to schizophrenia. Eur Psychiatry 19:354–357. https://doi.org/10.1016/j.eurpsy.2004.06.007

    Article  PubMed  Google Scholar 

  37. Tripathi A, Lammers KM, Goldblum S et al (2009) Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci USA 106:16799–16804. https://doi.org/10.1073/pnas.0906773106

    Article  PubMed  Google Scholar 

  38. Tsukita S, Furuse M (2002) Claudin-based barrier in simple and stratified cellular sheets. Curr Opin Cell Biol 14:531–536. https://doi.org/10.1016/S0955-0674(02)00362-9

    Article  CAS  PubMed  Google Scholar 

  39. Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9:799–809. https://doi.org/10.1038/nri2653

    Article  CAS  PubMed  Google Scholar 

  40. Wei J, Hemmings GP (2005) Gene, gut and schizophrenia: the meeting point for the gene-environment interaction in developing schizophrenia. Med Hypotheses 64:547–552. https://doi.org/10.1016/j.mehy.2004.08.011

    Article  CAS  PubMed  Google Scholar 

  41. Wen L, Ley RE, Volchkov PY et al (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455:1109–1113. https://doi.org/10.1038/nature07336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yücel M, Kotan D, Çiftçi GG et al (2016) Serum levels of endocan, claudin-5 and cytokines in migraine. Eur Rev Med Pharmacol Sci 20:930–936

    PubMed  Google Scholar 

  43. Zhang D, Zhang L, Zheng Y et al (2014) Circulating zonulin levels in newly diagnosed Chinese type 2 diabetes patients. Diabetes Res Clin Pract 106:312–318. https://doi.org/10.1016/j.diabres.2014.08.017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank all patients for participating in this study. We also wish to thank the Scientific Research Projects Coordination Unit of Süleyman Demirel University for their financial support (Number: TTU-2019-6946).

Funding

This study was funded by Scientific Research Projects Coordination Unit of Süleyman Demirel University (Number: TTU-2019-6946).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faruk Kılıç.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Andrea Schmitt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usta, A., Kılıç, F., Demirdaş, A. et al. Serum zonulin and claudin-5 levels in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 271, 767–773 (2021). https://doi.org/10.1007/s00406-020-01152-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-020-01152-9

Keywords

Navigation