Skip to main content
Log in

Association between tDCS computational modeling and clinical outcomes in depression: data from the ELECT-TDCS trial

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation intervention investigated for the treatment of depression. Clinical results have been heterogeneous, partly due to the variability of electric field (EF) strength in the brain owing to interindividual differences in head anatomy. Therefore, we investigated whether EF strength was correlated with behavioral changes in 16 depressed patients using simulated electric fields in real patient data from a controlled clinical trial. We hypothesized that EF strength in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC), brain regions implicated in depression pathophysiology, would be associated with changes in depression, mood and anxiety scores. SimNIBS were used to simulate individual electric fields based on the MRI structural T1-weighted brain scans of depressed subjects. Linear regression models showed, at the end of the acute treatment phase, that simulated EF strength was inversely associated with negative affect in the bilateral ACC (left: β = − 160.463, CI [− 291.541, − 29.385], p = 0.021; right: β = − 189.194, CI [− 289.479, − 88.910], p = 0.001) and DLPFC (left: β = − 93.210, CI [− 154.960, − 31.461], p = 0.006; right: β = − 82.564, CI [− 142.867, − 22.262], p = 0.011) and with depression scores in the left ACC (β = − 156.91, CI [− 298.51, − 15.30], p = 0.033). No association between positive affect or anxiety scores, and simulated EF strength in the investigated brain regions was found. To conclude, our findings show preliminary evidence that EF strength simulations might be associated with further behavioral changes in depressed patients, unveiling a potential mechanism of action for tDCS. Further studies should investigate whether individualization of EF strength in key brain regions impact clinical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brunoni AR, Nitsche MA, Bolognini N et al (2012) Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul 5:175–195

    PubMed  Google Scholar 

  2. Moffa AH, Brunoni AR, Nikolin S, Loo CK (2018) Transcranial direct current stimulation in psychiatric disorders: a comprehensive review. Psychiatr Clin North Am 41:447–463

    PubMed  Google Scholar 

  3. Moffa AH, Martin D, Alonzo A, et al (2019) Efficacy and acceptability of transcranial direct current stimulation (tDCS) for major depressive disorder: an individual patient data meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry pp 109836

  4. Grimm S, Beck J, Schuepbach D et al (2008) Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: an fMRI study in severe major depressive disorder. Biol Psychiatr 63:369–376

    Google Scholar 

  5. Seibt O, Brunoni AR, Huang Y, Bikson M (2015) The pursuit of DLPFC: non-neuronavigated methods to target the left dorsolateral pre-frontal cortex with symmetric bicephalic transcranial direct current stimulation (tDCS). Brain Stimul 8:590–602

    PubMed  Google Scholar 

  6. Brunoni AR, Valiengo L, Baccaro A et al (2013) The sertraline vs. electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. JAMA Psychiatr 70:383–391

    CAS  Google Scholar 

  7. Brunoni AR, Moffa AH, Sampaio-Junior B et al (2017) Trial of electrical direct-current therapy versus escitalopram for depression. N Engl J Med 376:2523–2533

    CAS  PubMed  Google Scholar 

  8. Sampaio-Junior B, Tortella G, Borrione L et al (2018) Efficacy and safety of transcranial direct current stimulation as an add-on treatment for bipolar depression: a randomized clinical trial. JAMA Psychiatr 75:158–166

    Google Scholar 

  9. Brunoni AR, Moffa AH, Fregni F et al (2016) Transcranial direct current stimulation for acute major depressive episodes: meta-analysis of individual patient data. Br J Psychiatr 208:522

    Google Scholar 

  10. Loo CK, Husain MM, McDonald WM et al (2018) International randomized-controlled trial of transcranial direct current stimulation in depression. Brain Stimul 11:125–133

    PubMed  Google Scholar 

  11. Lisanby SH (2017) Noninvasive brain stimulation for depression—the devil is in the dosing. N Engl J Med 376:2593–2594

    PubMed  Google Scholar 

  12. Lang N, Nitsche MA, Dileone M et al (2011) Transcranial direct current stimulation effects on I-wave activity in humans. J Neurophysiol 105:2802–2810

    PubMed  Google Scholar 

  13. Fresnoza S, Paulus W, Nitsche MA, Kuo M-F (2014) Nonlinear dose-dependent impact of D1 receptor activation on motor cortex plasticity in humans. J Neurosci 34:2744–2753

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Datta A, Truong D, Minhas P et al (2012) Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Front Psychiatr 3:91

    Google Scholar 

  15. Bulubas L, Padberg F, Bueno PV et al (2019) Antidepressant effects of tDCS are associated with prefrontal gray matter volumes at baseline: evidence from the ELECT-TDCS trial. Brain Stimul 12:1197–1204

    PubMed  Google Scholar 

  16. Opitz A, Paulus W, Will S et al (2015) Determinants of the electric field during transcranial direct current stimulation. Neuroimage 109:140–150

    PubMed  Google Scholar 

  17. Antonenko D, Thielscher A, Saturnino GB et al (2019) Towards precise brain stimulation: is electric field simulation related to neuromodulation? Brain Stimul 12:1159–1168

    PubMed  Google Scholar 

  18. Mikkonen M, Laakso I, Sumiya M et al (2018) TMS motor thresholds correlate with TDCS electric field strengths in hand motor area. Front Neurosci 12:426

    PubMed  PubMed Central  Google Scholar 

  19. Bora E, Fornito A, Pantelis C, Yücel M (2012) Gray matter abnormalities in major depressive disorder: a meta-analysis of voxel based morphometry studies. J Affect Disord 138:9–18

    PubMed  Google Scholar 

  20. Lai C-H (2013) Gray matter volume in major depressive disorder: a meta-analysis of voxel-based morphometry studies. Psychiatr Res 211:37–46

    Google Scholar 

  21. Liao Y, Huang X, Wu Q et al (2013) Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. J Psychiatr Neurosci 38:49–56

    Google Scholar 

  22. Brunoni AR, Sampaio-Junior B, Moffa AH et al (2019) Noninvasive brain stimulation in psychiatric disorders: a primer. Braz J Psychiatr 41:70–81

    Google Scholar 

  23. Baeken C, Brem A-K, Arns M et al (2019) Repetitive transcranial magnetic stimulation treatment for depressive disorders. Curr Opin Psychiatr 32:409

    Google Scholar 

  24. Smith R, Chen K, Baxter L et al (2013) Antidepressant effects of sertraline associated with volume increases in dorsolateral prefrontal cortex. J Affect Disord 146:414–419

    CAS  PubMed  Google Scholar 

  25. Weigand A, Horn A, Caballero R et al (2018) Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biol Psychiatr 84:28–37

    CAS  Google Scholar 

  26. Hamilton M (1980) Rating depressive patients. J Clin Psychiatr 41:21–24

    CAS  Google Scholar 

  27. Watson D, Clark LA, Tellegen A (1988) Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol 54:1063–1070

    CAS  PubMed  Google Scholar 

  28. Spielberger CD, Gorsuch RL (1983) State-trait anxiety inventory for adults: manual, instrument, and scoring guide. Mind Garden Incorporated, Menlo Park

    Google Scholar 

  29. Brunoni AR, Zanao T, Vanderhasselt MA, et al (2013) Enhancement of affective processing induced by bi-frontal transcranial direct current stimulation in patients with major depression. Neuromodulation [Epub–ahead of print]

  30. Moreno ML, Vanderhasselt M-A, Carvalho AF et al (2015) Effects of acute transcranial direct current stimulation in hot and cold working memory tasks in healthy and depressed subjects. Neurosci Lett 591:126–131

    CAS  PubMed  Google Scholar 

  31. Ironside M, O’Shea J, Cowen PJ, Harmer CJ (2016) Frontal cortex stimulation reduces vigilance to threat: implications for the treatment of depression and anxiety. Biol Psychiatr 79:823–830

    Google Scholar 

  32. Brunoni AR, Sampaio-Junior B, Moffa AH et al (2015) The escitalopram versus electric current therapy for treating depression clinical study (ELECT-TDCS): rationale and study design of a non-inferiority, triple-arm, placebo-controlled clinical trial. Sao Paulo Med J 133:252–263

    PubMed  Google Scholar 

  33. Thielscher A, Antunes A, Saturnino GB (2015) Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). pp 222–225

  34. Sallet J, Mars RB, Noonan MP et al (2013) The organization of dorsal frontal cortex in humans and macaques. J Neurosci 33:12255–12274

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fan L, Li H, Zhuo J et al (2016) The Human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex 26:3508–3526

    PubMed  PubMed Central  Google Scholar 

  36. Fox MD, Buckner RL, White MP et al (2012) Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatr 72:595–603

    Google Scholar 

  37. Li C-T, Wang S-J, Hirvonen J et al (2010) Antidepressant mechanism of add-on repetitive transcranial magnetic stimulation in medication-resistant depression using cerebral glucose metabolism. J Affect Disord 127:219–229

    PubMed  Google Scholar 

  38. Downar J, Geraci J, Salomons TV et al (2014) Anhedonia and reward-circuit connectivity distinguish nonresponders from responders to dorsomedial prefrontal repetitive transcranial magnetic stimulation in major depression. Biol Psychiatr 76:176–185

    Google Scholar 

  39. Rossum G (1995) Python reference manual. CWI (Centre for Mathematics and Computer Science), Amsterdam, The Netherlands.

  40. Seabold S, Perktold J (2010) Statsmodels: econometric and statistical modeling with python of the 9th Python in science conference

  41. Brunoni AR, Padberg F, Vieira ELM et al (2018) Plasma biomarkers in a placebo-controlled trial comparing tDCS and escitalopram efficacy in major depression. Prog Neuropsychopharmacol Biol Psychiatr 86:211–217

    CAS  Google Scholar 

  42. Moreno ML, Goerigk SA, Bertola L et al (2020) Cognitive changes after tDCS and escitalopram treatment in major depressive disorder: results from the placebo-controlled ELECT-TDCS trial. J Affect Disord 263:344–352

    CAS  PubMed  Google Scholar 

  43. Zhang F-F, Peng W, Sweeney JA et al (2018) Brain structure alterations in depression: psychoradiological evidence. CNS Neurosci Ther 24:994–1003

    PubMed  PubMed Central  Google Scholar 

  44. Lan MJ, Chhetry BT, Liston C et al (2016) Transcranial magnetic stimulation of left dorsolateral prefrontal cortex induces brain morphological changes in regions associated with a treatment resistant major depressive episode: an exploratory analysis. Brain Stimul 9:577–583

    PubMed  PubMed Central  Google Scholar 

  45. Yrondi A, Péran P, Sauvaget A et al (2018) Structural-functional brain changes in depressed patients during and after electroconvulsive therapy. Acta Neuropsychiatr 30:17–28

    PubMed  Google Scholar 

  46. Iseger TA, van Bueren NER, Kenemans JL et al (2020) A frontal-vagal network theory for major depressive disorder: implications for optimizing neuromodulation techniques. Brain Stimul 13:1–9

    PubMed  Google Scholar 

  47. Taylor SF, Ho SS, Abagis T et al (2018) Changes in brain connectivity during a sham-controlled, transcranial magnetic stimulation trial for depression. J Affect Disord 232:143–151

    PubMed  PubMed Central  Google Scholar 

  48. Rive MM, van Rooijen G, Veltman DJ et al (2013) Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neurosci Biobehav Rev 37:2529–2553

    PubMed  Google Scholar 

  49. Greening SG, Osuch EA, Williamson PC, Mitchell DGV (2014) The neural correlates of regulating positive and negative emotions in medication-free major depression. Soc Cogn Affect Neurosci 9:628–637

    PubMed  Google Scholar 

  50. Dixon ML, Thiruchselvam R, Todd R, Christoff K (2017) Emotion and the prefrontal cortex: an integrative review. Psychol Bull 143:1033–1081

    PubMed  Google Scholar 

  51. Ochsner KN, Bunge SA, Gross JJ, Gabrieli JDE (2002) Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J Cogn Neurosci 14:1215–1229

    PubMed  Google Scholar 

  52. Chikazoe J, Lee DH, Kriegeskorte N, Anderson AK (2014) Population coding of affect across stimuli, modalities and individuals. Nat Neurosci 17:1114–1122

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Heller AS, Johnstone T, Peterson MJ et al (2013) Increased prefrontal cortex activity during negative emotion regulation as a predictor of depression symptom severity trajectory over 6 months. JAMA Psychiatry 70:1181–1189

    CAS  PubMed  Google Scholar 

  54. Kambeitz J, Goerigk S, Gattaz W et al (2020) Clinical patterns differentially predict response to transcranial direct current stimulation (tDCS) and escitalopram in major depression: a machine learning analysis of the ELECT-TDCS study. J Affect Disord 265:460

    PubMed  Google Scholar 

  55. Wolkenstein L, Plewnia C (2012) Amelioration of cognitive control in depression by transcranial direct current stimulation. Biol Psychiatr. https://doi.org/10.1016/j.biopsych.2012.10.010

    Article  Google Scholar 

  56. Vanderhasselt M-A, De Raedt R, Namur V et al (2016) Emotional reactivity to valence-loaded stimuli are related to treatment response of neurocognitive therapy. J Affect Disord 190:443–449

    PubMed  Google Scholar 

  57. Sanchez-Lopez A, Vanderhasselt M-A, Allaert J et al (2018) Neurocognitive mechanisms behind emotional attention: Inverse effects of anodal tDCS over the left and right DLPFC on gaze disengagement from emotional faces. Cogn Affect Behav Neurosci 18:485–494

    PubMed  Google Scholar 

  58. Ironside M, Browning M, Ansari TL et al (2019) Effect of prefrontal cortex stimulation on regulation of amygdala response to threat in individuals with trait anxiety: a randomized clinical trial. JAMA Psychiatr 76:71–78

    Google Scholar 

  59. de Lima AL, Braga FMA, da Costa RMM et al (2019) Transcranial direct current stimulation for the treatment of generalized anxiety disorder: a randomized clinical trial. J Affect Disord 259:31–37

    PubMed  Google Scholar 

  60. D’Urso G, Dell’Osso B, Rossi R et al (2017) Clinical predictors of acute response to transcranial direct current stimulation (tDCS) in major depression. J Affect Disord 219:25–30

    PubMed  Google Scholar 

  61. Sanchez A, Vanderhasselt M-A, Baeken C, De Raedt R (2016) Effects of tDCS over the right DLPFC on attentional disengagement from positive and negative faces: an eye-tracking study. Cogn Affect Behav Neurosci 16:1027–1038

    PubMed  Google Scholar 

  62. Ankri YLE, Braw Y, Luboshits G, Meiron O (2020) The effects of stress and transcranial direct current stimulation (tDCS) on working memory: a randomized controlled trial. Cogn Affect Behav Neurosci. https://doi.org/10.3758/s13415-019-00755-7

    Article  PubMed  Google Scholar 

  63. Brunoni AR, Vanderhasselt M-A, Boggio PS et al (2013) Polarity- and valence-dependent effects of prefrontal transcranial direct current stimulation on heart rate variability and salivary cortisol. Psychoneuroendocrinology 38:58–66

    CAS  PubMed  Google Scholar 

  64. da Valiengo L, Goerigk S, Gordon PC et al (2019) Efficacy and safety of transcranial direct current stimulation for treating negative symptoms in schizophrenia: a randomized clinical trial. JAMA Psychiatr. https://doi.org/10.1001/jamapsychiatry.2019.3199

    Article  Google Scholar 

  65. Valiengo LC, Goulart AC, de Oliveira JF et al (2016) Transcranial direct current stimulation for the treatment of post-stroke depression: results from a randomised, sham-controlled, double-blinded trial. J Neurol Neurosurg Psychiatr. https://doi.org/10.1136/jnnp-2016-314075

    Article  Google Scholar 

  66. Opitz A, Falchier A, Yan C-G et al (2016) Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Sci Rep 6:31236

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Datta A, Krause MR, Pilly PK et al (2016) On comparing in vivo intracranial recordings in non-human primates to predictions of optimized transcranial electrical stimulation. Conf Proc IEEE Eng Med Biol Soc 2016:1774–1777

    Google Scholar 

  68. Bikson M, Brunoni AR, Charvet LE et al (2018) Rigor and reproducibility in research with transcranial electrical stimulation: an NIMH-sponsored workshop. Brain Stimul 11:465–480

    PubMed  Google Scholar 

  69. Borrione et al (2020) Precision non-implantable neuromodulation therapies: a perspective for the depressed brain. Brazil J Psychiatr. https://doi.org/10.1590/1516-4446-2019-0741

    Article  Google Scholar 

Download references

Funding

ELECT-TDCS funding: São Paulo Research State Foundation (FAPESP): grants FAPESP 2012/20911-5 and 2018/21722-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre R. Brunoni.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest to disclose.

Additional information

Communicated by Sebastian Walther.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suen, P.J.C., Doll, S., Batistuzzo, M.C. et al. Association between tDCS computational modeling and clinical outcomes in depression: data from the ELECT-TDCS trial. Eur Arch Psychiatry Clin Neurosci 271, 101–110 (2021). https://doi.org/10.1007/s00406-020-01127-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-020-01127-w

Keywords

Navigation