Skip to main content

Advertisement

Log in

Novelty seeking mediates the effect of DRD3 variation on onset age of amphetamine dependence in Han Chinese population

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The dopamine receptor D3 (DRD3) gene, one of the candidate genes for amphetamine dependence (AD), is involved in the mesolimbic dopaminergic system, implicated as the underlying mechanism of addiction. Our case–control study aimed to investigate whether the DRD3 gene is associated with the susceptibility to AD and specific personality traits in AD patients. A total of 1060 unrelated Han Chinese subjects (559 AD patients and 501 controls) were screened using the same assessment tool and genotyped for eight DRD3 polymorphisms. All patients met the DSM-IV-TR criteria for AD, and personality traits of 539 were assessed using a Tridimensional Personality Questionnaire. Furthermore, AD individuals were divided into four clinical subgroups based on gender and psychosis status, to reduce the clinical heterogeneity. We found that the ATA haplotype combination for SNPs rs324029, rs6280, and rs9825563, respectively, was significantly associated with total AD patients (p = 0.0003 after 10,000 permutations). Similar results were observed in the both male and non-psychosis subgroup but not in other subgroups. In addition, DRD3 rs9825563 may influence onset age of drug use, partially mediated by novelty seeking in the non-psychosis AD group. In conclusion, DRD3 is a potential genetic factor in the susceptibility to AD and is associated with onset age of drug use through interaction with novelty seeking in a specific patient group in the Han Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Amphetamine dependence

DAT:

Dopamine transporter

DRD3:

Dopamine receptor D3

DRD4:

Dopamine receptor D4

DSM-IV-TR:

Diagnostic and statistical manual for mental disorders, 4th edition, text revision

HA:

Harm avoidance

LD:

Linkage disequilibrium

MA:

Methamphetamine

NS:

Novelty seeking

RD:

Reward dependence

SADS-L:

Schedule of affective disorder and schizophrenia-lifetime

SNP:

Single-nucleotide polymorphism

TPQ:

Tridimensional personality questionnaire

References

  1. UNODC (2014) World drug report. United Nations Office on Drug and Crime, Vienna

    Google Scholar 

  2. Dean AC, Groman SM, Morales AM, London ED (2013) An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacology 38(2):259–274. doi:10.1038/npp.2012.179

    Article  CAS  PubMed  Google Scholar 

  3. Meredith CW, Jaffe C, Ang-Lee K, Saxon AJ (2005) Implications of chronic methamphetamine use: a literature review. Harv Rev Psychiatry 13(3):141–154. doi:10.1080/10673220591003605

    Article  PubMed  Google Scholar 

  4. Kendler KS, Jacobson KC, Prescott CA, Neale MC (2003) Specificity of genetic and environmental risk factors for use and abuse/dependence of cannabis, cocaine, hallucinogens, sedatives, stimulants, and opiates in male twins. Am J Psychiatry 160(4):687–695

    Article  PubMed  Google Scholar 

  5. Ystrom E, Reichborn-Kjennerud T, Neale MC, Kendler KS (2014) Genetic and environmental risk factors for illicit substance use and use disorders: joint analysis of self and co-twin ratings. Behav Genet 44(1):1–13. doi:10.1007/s10519-013-9626-6

    Article  PubMed  Google Scholar 

  6. Koob GF, Nestler EJ (1997) The neurobiology of drug addiction. J Neuropsychiatry Clin Neurosci 9(3):482–497

    Article  CAS  PubMed  Google Scholar 

  7. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5(6):483–494. doi:10.1038/nrn1406

    Article  CAS  PubMed  Google Scholar 

  8. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598. doi:10.1146/annurev.neuro.29.051605.113009

    Article  CAS  PubMed  Google Scholar 

  9. Pierce RC, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30(2):215–238. doi:10.1016/j.neubiorev.2005.04.016

    Article  CAS  PubMed  Google Scholar 

  10. Heidbreder CA, Gardner EL, Xi ZX, Thanos PK, Mugnaini M, Hagan JJ, Ashby CR Jr (2005) The role of central dopamine D3 receptors in drug addiction: a review of pharmacological evidence. Brain Res 49(1):77–105

    Article  CAS  Google Scholar 

  11. Yue K, Ma B, Ru Q, Chen L, Gan Y, Wang D, Jin G, Li C (2012) The dopamine receptor antagonist levo-tetrahydropalmatine attenuates heroin self-administration and heroin-induced reinstatement in rats. Pharmacol Biochem Behav 102(1):1–5

    Article  CAS  PubMed  Google Scholar 

  12. Sabioni P, Di Ciano P, Le Foll B (2016) Effect of a D3 receptor antagonist on context-induced reinstatement of nicotine seeking. Prog Neuropsychopharmacol Biol Psychiatry 64:149–154. doi:10.1016/j.pnpbp.2015.08.006

    Article  CAS  PubMed  Google Scholar 

  13. Beninger RJ, Banasikowski TJ (2008) Dopaminergic mechanism of reward-related incentive learning: focus on the dopamine D(3) receptor. Neurotox Res 14(1):57–70. doi:10.1007/BF03033575

    Article  CAS  PubMed  Google Scholar 

  14. Le Foll B, Goldberg SR, Sokoloff P (2005) The dopamine D3 receptor and drug dependence: effects on reward or beyond? Neuropharmacology 49(4):525–541

    Article  PubMed  Google Scholar 

  15. Le Coniat M, Sokoloff P, Hillion J, Martres MP, Giros B, Pilon C, Schwartz JC, Berger R (1991) Chromosomal localization of the human D3 dopamine receptor gene. Hum Genet 87(5):618–620

    Article  PubMed  Google Scholar 

  16. Smits BM, D’Souza UM, Berezikov E, Cuppen E, Sluyter F (2004) Identifying polymorphisms in the Rattus norvegicus D3 dopamine receptor gene and regulatory region. Genes brain behav 3(3):138–148

    Article  CAS  PubMed  Google Scholar 

  17. Hellstrand M, Danielsen EA, Steen VM, Ekman A, Eriksson E, Nilsson CL (2004) The ser9gly SNP in the dopamine D3 receptor causes a shift from cAMP related to PGE2 related signal transduction mechanisms in transfected CHO cells. J Med Genet 41(11):867–871. doi:10.1136/jmg.2004.020941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jeanneteau F, Funalot B, Jankovic J, Deng H, Lagarde JP, Lucotte G, Sokoloff P (2006) A functional variant of the dopamine D3 receptor is associated with risk and age-at-onset of essential tremor. Proc Natl Acad Sci USA 103(28):10753–10758. doi:10.1073/pnas.0508189103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Messas G, Meira-Lima I, Turchi M, Franco O, Guindalini C, Castelo A, Laranjeira R, Vallada H (2005) Association study of dopamine D2 and D3 receptor gene polymorphisms with cocaine dependence. Psychiatr Genet 15(3):171–174

    Article  PubMed  Google Scholar 

  20. Bloch PJ, Nall AH, Weller AE, Ferraro TN, Berrettini WH, Kampman KM, Pettinati HM, Dackis CA, O’Brien CP, Oslin DW, Lohoff FW (2009) Association analysis between polymorphisms in the dopamine D3 receptor (DRD3) gene and cocaine dependence. Psychiatr Genet 19(5):275–276. doi:10.1097/YPG.0b013e32832cec12

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen CK, Hu X, Lin SK, Sham PC, el Loh W, Li T, Murray RM, Ball DM (2004) Association analysis of dopamine D2-like receptor genes and methamphetamine abuse. Psychiatr Genet 14(4):223–226

    Article  PubMed  Google Scholar 

  22. Ujike H, Katsu T, Okahisa Y, Takaki M, Kodama M, Inada T, Uchimura N, Yamada M, Iwata N, Sora I, Iyo M, Ozaki N, Kuroda S (2009) Genetic variants of D2 but not D3 or D4 dopamine receptor gene are associated with rapid onset and poor prognosis of methamphetamine psychosis. Prog Neuropsychopharmacol Biol Psychiatry 33(4):625–629. doi:10.1016/j.pnpbp.2009.02.019

    Article  CAS  PubMed  Google Scholar 

  23. Gupta S, Bousman CA, Chana G, Cherner M, Heaton RK, Deutsch R, Ellis RJ, Grant I, Everall IP (2011) Dopamine receptor D3 genetic polymorphism (rs6280TC) is associated with rates of cognitive impairment in methamphetamine-dependent men with HIV: preliminary findings. J neurovirol 17(3):239–247. doi:10.1007/s13365-011-0028-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen CY, Storr CL, Anthony JC (2009) Early-onset drug use and risk for drug dependence problems. Addict Behav 34(3):319–322. doi:10.1016/j.addbeh.2008.10.021

    Article  CAS  PubMed  Google Scholar 

  25. Sartor CE, Agrawal A, Lynskey MT, Bucholz KK, Madden PA, Heath AC (2009) Common genetic influences on the timing of first use for alcohol, cigarettes, and cannabis in young African-American women. Drug Alcohol Depend 102(1–3):49–55. doi:10.1016/j.drugalcdep.2008.12.013S0376-8716(09)00021-0

    Article  PubMed  PubMed Central  Google Scholar 

  26. Trenz RC, Scherer M, Harrell P, Zur J, Sinha A, Latimer W (2012) Early onset of drug and polysubstance use as predictors of injection drug use among adult drug users. Addict Behav 37(4):367–372. doi:10.1016/j.addbeh.2011.11.011

    Article  PubMed  Google Scholar 

  27. Conner BT, Hellemann GS, Ritchie TL, Noble EP (2010) Genetic, personality, and environmental predictors of drug use in adolescents. J Subst Abuse Treat 38(2):178–190. doi:10.1016/j.jsat.2009.07.004

    Article  PubMed  Google Scholar 

  28. Hien D, Cohen LR, Caldeira NA, Flom P, Wasserman G (2010) Depression and anger as risk factors underlying the relationship between maternal substance involvement and child abuse potential. Child Abuse Negl 34(2):105–113. doi:10.1016/j.chiabu.2009.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wills TA, Vaccaro D, McNamara G (1994) Novelty seeking, risk taking, and related constructs as predictors of adolescent substance use: an application of Cloninger’s theory. J Subst Abuse 6(1):1–20

    Article  CAS  PubMed  Google Scholar 

  30. Ko CH, Yen JY, Chen CC, Chen SH, Wu K, Yen CF (2006) Tridimensional personality of adolescents with internet addiction and substance use experience. Can J Psychiatry 51(14):887–894

    Article  PubMed  Google Scholar 

  31. Basiaux P, le Bon O, Dramaix M, Massat I, Souery D, Mendlewicz J, Pelc I, Verbanck P (2001) Temperament and Character Inventory (TCI) personality profile and sub-typing in alcoholic patients: a controlled study. Alcohol Alcohol 36(6):584–587

    Article  CAS  PubMed  Google Scholar 

  32. Griesler PC, Hu MC, Schaffran C, Kandel DB (2008) Comorbidity of psychiatric disorders and nicotine dependence among adolescents: findings from a prospective, longitudinal study. J Am Acad Child Adolesc Psychiatry 47(11):1340–1350. doi:10.1097/CHI.0b013e318185d2ad

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kuo SC, Yeh YW, Chen CY, Huang CC, Chang HA, Yen CH, Ho PS, Liang CS, Chou HW, Lu RB, Huang SY (2014) DRD3 variation associates with early-onset heroin dependence, but not specific personality traits. Prog Neuropsychopharmacol Biol Psychiatry 51:1–8. doi:10.1016/j.pnpbp.2013.12.018

    Article  CAS  PubMed  Google Scholar 

  34. Li T, Yu S, Du J, Chen H, Jiang H, Xu K, Fu Y, Wang D, Zhao M (2011) Role of novelty seeking personality traits as mediator of the association between COMT and onset age of drug use in Chinese heroin dependent patients. PLoS ONE 6(8):e22923. doi:10.1371/journal.pone.0022923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Staner L, Hilger C, Hentges F, Monreal J, Hoffmann A, Couturier M, Le Bon O, Stefos G, Souery D, Mendlewicz J (1998) Association between novelty-seeking and the dopamine D3 receptor gene in bipolar patients: a preliminary report. Am J Med Genet 81(2):192–194. doi:10.1002/(SICI)1096-8628(19980328)81:2<192:AID-AJMG12>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  36. Thome J, Weijers HG, Wiesbeck GA, Sian J, Nara K, Boning J, Riederer P (1999) Dopamine D3 receptor gene polymorphism and alcohol dependence: relation to personality rating. Psychiatr Genet 9(1):17–21

    Article  CAS  PubMed  Google Scholar 

  37. Jonsson EG, Burgert E, Crocq MA, Gustavsson JP, Forslund K, Mattila-Evenden M, Rylander G, Flyckt LK, Bjerkenstedt L, Wiesel FA, Asberg M, Bergman H (2003) Association study between dopamine D3 receptor gene variant and personality traits. Am J Med Genet B Neuropsychiatr Genet 117B(1):61–65. doi:10.1002/ajmg.b.10009

    Article  PubMed  Google Scholar 

  38. Urata T, Takahashi N, Hakamata Y, Iijima Y, Kuwahara N, Ozaki N, Ono Y, Amano M, Inada T (2007) Gene–gene interaction analysis of personality traits in a Japanese population using an electrochemical DNA array chip analysis. Neurosci Lett 414(3):209–212. doi:10.1016/j.neulet.2006.12.018

    Article  CAS  PubMed  Google Scholar 

  39. Schosser A, Fuchs K, Scharl T, Schloegelhofer M, Kindler J, Mossaheb N, Kaufmann RM, Leisch F, Kasper S, Sieghart W, Aschauer HN (2010) Interaction between serotonin 5-HT2A receptor gene and dopamine transporter (DAT1) gene polymorphisms influences personality trait of persistence in Austrian Caucasians. World J Biol Psychiatry 11(2 Pt 2):417–424. doi:10.3109/15622970801935586

    Article  PubMed  Google Scholar 

  40. Endicott J, Spitzer RL (1978) A diagnostic interview: the schedule for affective disorders and schizophrenia. Arch Gen Psychiatry 35(7):837–844

    Article  CAS  PubMed  Google Scholar 

  41. Huang SY, Chen HK, Ma KH, Shy MJ, Chen JH, Lin WC, Lu RB (2010) Association of promoter variants of human dopamine transporter gene with schizophrenia in Han Chinese. Schizophr Res 116(1):68–74. doi:10.1016/j.schres.2009.10.004

    Article  PubMed  Google Scholar 

  42. Chen WJ, Chen HM, Chen CC, Yu WY, Cheng AT (2002) Cloninger’s Tridimensional Personality Questionnaire: psychometric properties and construct validity in Taiwanese adults. Compr Psychiatry 43(2):158–166

    Article  PubMed  Google Scholar 

  43. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265. doi:10.1093/bioinformatics/bth457

    Article  CAS  PubMed  Google Scholar 

  44. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225–2229. doi:10.1126/science.1069424

    Article  CAS  PubMed  Google Scholar 

  45. Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41(4):1149–1160. doi:10.3758/BRM.41.4.1149

    Article  PubMed  Google Scholar 

  46. Shrout PE, Bolger N (2002) Mediation in experimental and nonexperimental studies: new procedures and recommendations. Psychol Methods 7(4):422–445

    Article  PubMed  Google Scholar 

  47. Baron RM, Kenny DA (1986) The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51(6):1173–1182

    Article  CAS  PubMed  Google Scholar 

  48. Yang HC, Lin CH, Hsu CL, Hung SI, Wu JY, Pan WH, Chen YT, Fann CS (2006) A comparison of major histocompatibility complex SNPs in Han Chinese residing in Taiwan and Caucasians. J Biomed Sci 13(4):489–498. doi:10.1007/s11373-006-9077-7

    Article  CAS  PubMed  Google Scholar 

  49. Yeh YW, Lu RB, Tao PL, Shih MC, Lin WW, Huang SY (2010) Neither single-marker nor haplotype analyses support an association between the dopamine transporter gene and heroin dependence in Han Chinese. Genes brain Behav 9(6):638–647. doi:10.1111/j.1601-183X.2010.00597.x

    CAS  PubMed  Google Scholar 

  50. Kidd KK (1993) Associations of disease with genetic markers: deja vu all over again. Am J Med Genet 48(2):71–73. doi:10.1002/ajmg.1320480202

    Article  CAS  PubMed  Google Scholar 

  51. Munro CA, McCaul ME, Wong DF, Oswald LM, Zhou Y, Brasic J, Kuwabara H, Kumar A, Alexander M, Ye W, Wand GS (2006) Sex differences in striatal dopamine release in healthy adults. Biol Psychiatry 59(10):966–974. doi:10.1016/j.biopsych.2006.01.008

    Article  CAS  PubMed  Google Scholar 

  52. Riccardi P, Park S, Anderson S, Doop M, Ansari MS, Schmidt D, Baldwin R (2011) Sex differences in the relationship of regional dopamine release to affect and cognitive function in striatal and extrastriatal regions using positron emission tomography and [(1)(8)F]fallypride. Synapse 65(2):99–102. doi:10.1002/syn.20822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Glenthoj BY, Mackeprang T, Svarer C, Rasmussen H, Pinborg LH, Friberg L, Baare W, Hemmingsen R, Videbaek C (2006) Frontal dopamine D(2/3) receptor binding in drug-naive first-episode schizophrenic patients correlates with positive psychotic symptoms and gender. Biol Psychiatry 60(6):621–629. doi:10.1016/j.biopsych.2006.01.010

    Article  CAS  PubMed  Google Scholar 

  54. Brown AK, Mandelkern MA, Farahi J, Robertson C, Ghahremani DG, Sumerel B, Moallem N, London ED (2012) Sex differences in striatal dopamine D2/D3 receptor availability in smokers and non-smokers. Int J Neuropsychopharmacol 15(7):989–994. doi:10.1017/S1461145711001957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wodarz N, Bobbe G, Eichhammer P, Weijers HG, Wiesbeck GA, Johann M (2003) The candidate gene approach in alcoholism: are there gender-specific differences? Arch Women’s Ment Health 6(4):225–230. doi:10.1007/s00737-003-0011-y

    Article  CAS  Google Scholar 

  56. Dai D, Cheng J, Zhou K, Lv Y, Zhuang Q, Zheng R, Zhang K, Jiang D, Gao S, Duan S (2014) Significant association between DRD3 gene body methylation and schizophrenia. Psychiatry Res 220(3):772–777. doi:10.1016/j.psychres.2014.08.032

    Article  CAS  PubMed  Google Scholar 

  57. Okada N, Takahashi K, Nishimura Y, Koike S, Ishii-Takahashi A, Sakakibara E, Satomura Y, Kinoshita A, Takizawa R, Kawasaki S, Nakakita M, Ohtani T, Okazaki Y, Kasai K (2016) Characterizing prefrontal cortical activity during inhibition task in methamphetamine-associated psychosis versus schizophrenia: a multi-channel near-infrared spectroscopy study. Addict Biol 21(2):489–503. doi:10.1111/adb.12224

    Article  CAS  PubMed  Google Scholar 

  58. Ikeda M, Okahisa Y, Aleksic B, Won M, Kondo N, Naruse N, Aoyama-Uehara K, Sora I, Iyo M, Hashimoto R, Kawamura Y, Nishida N, Miyagawa T, Takeda M, Sasaki T, Tokunaga K, Ozaki N, Ujike H, Iwata N (2013) Evidence for shared genetic risk between methamphetamine-induced psychosis and schizophrenia. Neuropsychopharmacology 38(10):1864–1870. doi:10.1038/npp.2013.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Spurlock G, Williams J, McGuffin P, Aschauer HN, Lenzinger E, Fuchs K, Sieghart WC, Meszaros K, Fathi N, Laurent C, Mallet J, Macciardi F, Pedrini S, Gill M, Hawi Z, Gibson S, Jazin EE, Yang HT, Adolfsson R, Pato CN, Dourado AM, Owen MJ (1998) European Multicentre Association Study of Schizophrenia: a study of the DRD2 Ser311Cys and DRD3 Ser9Gly polymorphisms. Am J Med Genet 81(1):24–28

    Article  CAS  PubMed  Google Scholar 

  60. Jonsson EG, Flyckt L, Burgert E, Crocq MA, Forslund K, Mattila-Evenden M, Rylander G, Asberg M, Nimgaonkar VL, Edman G, Bjerkenstedt L, Wiesel FA, Sedvall GC (2003) Dopamine D3 receptor gene Ser9Gly variant and schizophrenia: association study and meta-analysis. Psychiatr Genet 13(1):1–12. doi:10.1097/01.ypg.0000051094.88669.4b

    Article  PubMed  Google Scholar 

  61. Utsunomiya K, Shinkai T, De Luca V, Hwang R, Sakata S, Fukunaka Y, Chen HI, Ohmori O, Nakamura J (2008) Genetic association between the dopamine D3 gene polymorphism (Ser9Gly) and schizophrenia in Japanese populations: evidence from a case-control study and meta-analysis. Neurosci Lett 444(2):161–165. doi:10.1016/j.neulet.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  62. Huang HY, Lee IH, Chen KC, Yeh TL, Chen PS, Yang YK, Chiu NT, Yao WJ, Chen CC (2010) Association of novelty seeking scores and striatal dopamine D(2)/D(3) receptor availability of healthy volunteers: single photon emission computed tomography with (1)(2)(3)i-iodobenzamide. J Formos Med Assoc 109(10):736–739. doi:10.1016/S0929-6646(10)60119-2

    Article  CAS  PubMed  Google Scholar 

  63. Cloninger CR, Svrakic DM, Przybeck TR (1993) A psychobiological model of temperament and character. Arch Gen Psychiatry 50(12):975–990

    Article  CAS  PubMed  Google Scholar 

  64. Hibino H, Tochigi M, Otowa T, Kato N, Sasaki T (2006) No association of DRD2, DRD3, and tyrosine hydroxylase gene polymorphisms with personality traits in the Japanese population. Behav Brain funct BBF 2:32. doi:10.1186/1744-9081-2-32

    Article  PubMed  Google Scholar 

  65. Lu YA, Lee SY, Chen SL, Chen SH, Chu CH, Tzeng NS, Huang SY, Kuo PH, Wang CL, Lee IH, Yeh TL, Yang YK, Lu RB (2012) Gene-temperament interactions might distinguish between bipolar I and bipolar II disorders: a cross-sectional survey of Han Chinese in Taiwan. J Clin Psychiatry 73(3):339–345. doi:10.4088/JCP.10m06330

    Article  CAS  PubMed  Google Scholar 

  66. Kalivas PW (1993) Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res 18(1):75–113

    Article  CAS  Google Scholar 

  67. Xu M, Koeltzow TE, Santiago GT, Moratalla R, Cooper DC, Hu XT, White NM, Graybiel AM, White FJ, Tonegawa S (1997) Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of D1 and D2 receptors. Neuron 19(4):837–848

    Article  CAS  PubMed  Google Scholar 

  68. Ballard ME, Mandelkern MA, Monterosso JR, Hsu E, Robertson CL, Ishibashi K, Dean AC, London ED (2015) Low dopamine D2/D3 receptor availability is associated with steep discounting of delayed rewards in methamphetamine dependence. Int J Neuropsychopharmacol 18:pyu119. doi:10.1093/ijnp/pyu119

    Article  PubMed  PubMed Central  Google Scholar 

  69. Barrus MM, Winstanley CA (2016) Dopamine D3 receptors modulate the ability of win-paired cues to increase risky choice in a rat gambling task. J Neurosci 36(3):785–794. doi:10.1523/JNEUROSCI.2225-15.2016

    Article  CAS  PubMed  Google Scholar 

  70. Golimbet VE, Alfimova MV, Gritsenko IK, Ebstein RP (2007) Relationship between dopamine system genes and extraversion and novelty seeking. Neurosci Behav Physiol 37(6):601–606. doi:10.1007/s11055-007-0058-8

    Article  CAS  PubMed  Google Scholar 

  71. Bidwell LC, Knopik VS, Audrain-McGovern J, Glynn TR, Spillane NS, Ray LA, Riggs NR, Guillot CR, Pang RD, Leventhal AM (2015) Novelty seeking as a phenotypic marker of adolescent substance use. Subst Abuse Res Treat 9(Suppl 1):1–10. doi:10.4137/SART.S22440

    Google Scholar 

  72. Ray LA, Bryan A, Mackillop J, McGeary J, Hesterberg K, Hutchison KE (2009) The dopamine D Receptor (DRD4) gene exon III polymorphism, problematic alcohol use and novelty seeking: direct and mediated genetic effects. Addict Biol 14(2):238–244. doi:10.1111/j.1369-1600.2008.00120.x

    Article  CAS  PubMed  Google Scholar 

  73. Laucht M, Becker K, Blomeyer D, Schmidt MH (2007) Novelty seeking involved in mediating the association between the dopamine D4 receptor gene exon III polymorphism and heavy drinking in male adolescents: results from a high-risk community sample. Biol Psychiatry 61(1):87–92. doi:10.1016/j.biopsych.2006.05.025

    Article  CAS  PubMed  Google Scholar 

  74. Laucht M, Becker K, El-Faddagh M, Hohm E, Schmidt MH (2005) Association of the DRD4 exon III polymorphism with smoking in fifteen-year-olds: a mediating role for novelty seeking? J Am Acad Child Adolesc Psychiatry 44(5):477–484. doi:10.1097/01.chi.0000155980.01792.7f

    Article  PubMed  Google Scholar 

  75. Schmid B, Blomeyer D, Becker K, Treutlein J, Zimmermann US, Buchmann AF, Schmidt MH, Esser G, Banaschewski T, Rietschel M, Laucht M (2009) The interaction between the dopamine transporter gene and age at onset in relation to tobacco and alcohol use among 19-year-olds. Addict Biol 14(4):489–499. doi:10.1111/j.1369-1600.2009.00171.x

    Article  CAS  PubMed  Google Scholar 

  76. Stram DO (2004) Tag SNP selection for association studies. Genet Epidemiol 27(4):365–374. doi:10.1002/gepi.20028

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from National Science Council MOST-103-2325-B-016-001(SYH), MOST-104-2314-B-016-012MY3(SYH), NSC101-2325-B-016-003(SYH); and by Grants from Tri-Service General Hospital TSGH-C103-133 (SYH), TSGH-C104-129 (SYH), TSGH-C105-124 (SYH), and TSGH-C104-126 (SCK), TSGH-C105-125 (SCK); and by Grants from Medical Affairs Bureau, Ministry of National Defense, Taiwan, MAB-104-073 (SYH). These funding agencies played no role in the study design, collection, analysis or interpretation of data, the writing of the report, or the decision to submit the paper for publication. We thank Miss Pi-Fen Tsui, Miss Mei-Chen Shih, and Miss Yun-Hsin Lin for their assistance in the preparation of this manuscript.

Author contributions

All authors contributed extensively to the work presented in this paper. SYH was the principal investigator for the study, conceived of the study, and helped to draft the manuscript. The authors SCK and SYH designed the study and wrote the protocol; SCK and YWY wrote the main manuscript text and data collection. SCK undertook the statistical analysis and wrote the first draft of the manuscript. The authors CYC, CCH, TYC, PSH, CSL, and CHY managed the literature searches and analyses. RBL supervised data collection and provided overall scientific supervision. All authors contributed to and have approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San-Yuan Huang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 81 kb)

Supplementary material 2 (DOC 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, SC., Yeh, YW., Chen, CY. et al. Novelty seeking mediates the effect of DRD3 variation on onset age of amphetamine dependence in Han Chinese population. Eur Arch Psychiatry Clin Neurosci 268, 249–260 (2018). https://doi.org/10.1007/s00406-016-0754-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-016-0754-x

Keywords

Navigation