Skip to main content

Advertisement

Log in

Decreased quinolinic acid in the hippocampus of depressive patients: evidence for local anti-inflammatory and neuroprotective responses?

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Disturbances of glutamatergic neurotransmission and mononuclear phagocyte system activation have been described uni- and bipolar depression (UD/BD). Linking the glutamate and immune hypotheses of depression, quinolinic acid (QUIN) is synthesized by activated microglia and acts as an endogenous N-methyl-D-aspartate glutamate receptor (NMDA-R) agonist with neurotoxic properties. Recently, we observed an increased microglial QUIN expression in the subgenual and supracallosal, but not in the pregenual part of the anterior cingulate cortex in postmortem brains of suicide cases with severe depression. Since several hints point to a role of the hippocampus in depression, we extended our study and addressed the question whether microglial QUIN is also changed in subregions of the hippocampus (CA1 and CA2/3 areas) in these patients. Postmortem brains of 12 acutely depressed patients (UD, n = 6; BD, n = 6) and 10 neuropsychiatric healthy age- and gender-matched control subjects were analyzed using QUIN-immunohistochemistry. Hippocampal volumes were determined in order to assess possible neurotoxic or neurodegenerative aspects. Microglial QUIN expression in the whole group of depressed patients was either comparable (left CA1, right CA2/3) or decreased (right CA1: p = 0.004, left CA2/3: p = 0.044) relative to controls. Post hoc tests showed that QUIN was reduced both in UD and BD in the right CA1 field (UD, p = 0.048; BD, p = 0.031). No loss of hippocampal volume was detected. Our data indicate that UD and BD are associated with a local reduction in QUIN-immunoreactive microglia in the hippocampus and underline the importance of the NMDA-R signaling in depressive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Steiner J, Bogerts B, Sarnyai Z, Walter M, Gos T, Bernstein HG, Myint AM (2012) Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: potential role of glial NMDA receptor modulators and impaired blood–brain barrier integrity. World J Biol Psychiatry 13(7):482–492

    Article  PubMed  Google Scholar 

  2. Milne A, MacQueen GM, Yucel K, Soreni N, Hall GB (2009) Hippocampal metabolic abnormalities at first onset and with recurrent episodes of a major depressive disorder: a proton magnetic resonance spectroscopy study. Neuroimage 47(1):36–41

    Article  PubMed  Google Scholar 

  3. Block W, Traber F, von Widdern O, Metten M, Schild H, Maier W, Zobel A, Jessen F (2009) Proton MR spectroscopy of the hippocampus at 3 T in patients with unipolar major depressive disorder: correlates and predictors of treatment response. Int J Neuropsychopharmacol 12(3):222–415

    Google Scholar 

  4. Drexhage RC, Knijff EM, Padmos RC, Heul-Nieuwenhuijzen L, Beumer W, Versnel MA, Drexhage HA (2010) The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Rev Neurother 10(1):59–76

    Article  CAS  PubMed  Google Scholar 

  5. Zorrilla EP, Luborsky L, McKay JR, Rosenthal R, Houldin A, Tax A, McCorkle R, Seligman DA, Schmidt K (2001) The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav Immun 15(3):199–226

    Article  CAS  PubMed  Google Scholar 

  6. Padmos RC, Hillegers MH, Knijff EM, Vonk R, Bouvy A, Staal FJ, de Ridder D, Kupka RW, Nolen WA, Drexhage HA (2008) A discriminating messenger RNA signature for bipolar disorder formed by an aberrant expression of inflammatory genes in monocytes. Arch Gen Psychiatry 65(4):395–407

    Article  CAS  PubMed  Google Scholar 

  7. Seidel A, Arolt V, Hunstiger M, Rink L, Behnisch A, Kirchner H (1996) Major depressive disorder is associated with elevated monocyte counts. Acta Psychiatr Scand 94(3):198–204

    Article  CAS  PubMed  Google Scholar 

  8. Maes M, Van der Planken M, Stevens WJ, Peeters D, DeClerck LS, Bridts CH, Schotte C, Cosyns P (1992) Leukocytosis, monocytosis and neutrophilia: hallmarks of severe depression. J Psychiatr Res 26(2):125–134

    Article  CAS  PubMed  Google Scholar 

  9. Myint AM, Kim YK (2003) Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses 61(5–6):519–525

    Article  CAS  PubMed  Google Scholar 

  10. Myint AM, Kim YK (2014) Network beyond IDO in psychiatric disorders: revisiting neurodegeneration hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 48:304–313

    Article  CAS  PubMed  Google Scholar 

  11. Guillemin GJ, Smith DG, Smythe GA, Armati PJ, Brew BJ (2003) Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv Exp Med Biol 527:105–112

    Article  CAS  PubMed  Google Scholar 

  12. Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49(1):15–23

    Article  PubMed  Google Scholar 

  13. Stone TW, Behan WM, MacDonald M, Darlington LG (2000) Possible mediation of quinolinic acid-induced hippocampal damage by reactive oxygen species. Amino Acids 19(1):275–281

    Article  CAS  PubMed  Google Scholar 

  14. Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z, Mawrin C, Brisch R, Bielau H, Meyer zu Schwabedissen L, Bogerts B, Myint AM (2011) Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation 8(94):1–9

    Google Scholar 

  15. Horn DI, Yu C, Steiner J, Buchmann J, Kaufmann J, Osoba A, Eckert U, Zierhut KC, Schiltz K, He H, Biswal B, Bogerts B, Walter M (2010) Glutamatergic and resting-state functional connectivity correlates of severity in major depression—the role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci 4(33):10

    Google Scholar 

  16. Auer DP, Putz B, Kraft E, Lipinski B, Schill J, Holsboer F (2000) Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry 47(4):305–313

    Article  CAS  PubMed  Google Scholar 

  17. Rosenberg DR, Macmaster FP, Mirza Y, Smith JM, Easter PC, Banerjee SP, Bhandari R, Boyd C, Lynch M, Rose M, Ivey J, Villafuerte RA, Moore GJ, Renshaw P (2005) Reduced anterior cingulate glutamate in pediatric major depression: a magnetic resonance spectroscopy study. Biol Psychiatry 58(9):700–704

    Article  CAS  PubMed  Google Scholar 

  18. Maes M, Verkerk R, Vandoolaeghe E, Lin A, Scharpe S (1998) Serum levels of excitatory amino acids, serine, glycine, histidine, threonine, taurine, alanine and arginine in treatment-resistant depression: modulation by treatment with antidepressants and prediction of clinical responsivity. Acta Psychiatr Scand 97(4):302–308

    Article  CAS  PubMed  Google Scholar 

  19. Kim JS, Schmid-Burgk W, Claus D, Kornhuber HH (1982) Increased serum glutamate in depressed patients. Archiv fur Psychiatrie und Nervenkrankheiten 232(4):299–304

    Article  CAS  PubMed  Google Scholar 

  20. Levine J, Panchalingam K, Rapoport A, Gershon S, McClure RJ, Pettegrew JW (2000) Increased cerebrospinal fluid glutamine levels in depressed patients. Biol Psychiatry 47(7):586–593

    Article  CAS  PubMed  Google Scholar 

  21. Curzon G, Bridges PK (1970) Tryptophan metabolism in depression. J Neurol Neurosurg Psychiatry 33(5):698–704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Yüksel C, Ongur D (2010) Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry 68(9):785–794

    Article  PubMed Central  PubMed  Google Scholar 

  23. Schwarcz R, Kohler C (1983) Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci Lett 38(1):85–90

    Article  CAS  PubMed  Google Scholar 

  24. MacQueen G, Frodl T (2011) The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry 16(3):252–264

    Article  CAS  PubMed  Google Scholar 

  25. Collingridge GL, Volianskis A, Bannister N, France G, Hanna L, Mercier M, Tidball P, Fang G, Irvine MW, Costa BM, Monaghan DT, Bortolotto ZA, Molnar E, Lodge D, Jane DE (2013) The NMDA receptor as a target for cognitive enhancement. Neuropharmacology 64:13–26

    Article  CAS  PubMed  Google Scholar 

  26. Bollini P, Pampallona S, Tibaldi G, Kupelnick B, Munizza C (1999) Effectiveness of antidepressants. Meta-analysis of dose-effect relationships in randomised clinical trials. Br J Psychiatry 174:297–303

    Article  CAS  PubMed  Google Scholar 

  27. Rey MJ, Schulz P, Costa C, Dick P, Tissot R (1989) Guidelines for the dosage of neuroleptics. I: chlorpromazine equivalents of orally administered neuroleptics. Int Clin Psychopharmacol 4(2):95–104

    Article  CAS  PubMed  Google Scholar 

  28. Perry PJ, Alexander B (1986) Sedative/hypnotic dependence: patient stabilization, tolerance testing, and withdrawal. Drug Intell Clin Pharm 20(7–8):532–537

    CAS  PubMed  Google Scholar 

  29. Gos T, Myint AM, Schiltz K, Meyer-Lotz G, Dobrowolny H, Busse S, Müller UJ, Mawrin C, Bernstein HG, Bogerts B, Steiner J (2014) Reduced microglial immunoreactivity for endogenous NMDA receptor agonist quinolinic acid in the hippocampus of schizophrenia patients. Brain Behav Immun (in press)

  30. Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, Bullmore E (2008) The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatry 165(8):1015–1023

    Article  PubMed Central  PubMed  Google Scholar 

  31. Hsu SM, Soban E (1982) Color modification of diaminobenzidine (DAB) precipitation by metallic ions and its application for double immunohistochemistry. J Histochem Cytochem 30(10):1079–1082

    Article  CAS  PubMed  Google Scholar 

  32. Polak M, Haymaker W, Johnson JE, D´Amelio F (1982) Neuroglia and their reactions. In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system. Charles C Thomas Publishing, Springfield, pp 363–480

    Google Scholar 

  33. Erhardt S, Lim CK, Linderholm KR, Janelidze S, Lindqvist D, Samuelsson M, Lundberg K, Postolache TT, Traskman-Bendz L, Guillemin GJ, Brundin L (2013) Connecting inflammation with glutamate agonism in suicidality. Neuropsychopharmacology 38(5):743–752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Stone TW, Behan WM (2007) Interleukin-1beta but not tumor necrosis factor-alpha potentiates neuronal damage by quinolinic acid: protection by an adenosine A2A receptor antagonist. J Neurosci Res 85(5):1077–1085

    Article  CAS  PubMed  Google Scholar 

  35. Platenik J, Stopka P, Vejrazka M, Stipek S (2001) Quinolinic acid-iron (ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the fenton reaction. Free Radical Res 34(5):445–459

    Article  CAS  Google Scholar 

  36. Ngai LY, Herbert J (2005) Glucocorticoid enhances the neurotoxic actions of quinolinic acid in the striatum in a cell-specific manner. J Neuroendocrinol 17(7):424–434

    Article  CAS  PubMed  Google Scholar 

  37. Maes M, Mihaylova I, Ruyter MD, Kubera M, Bosmans E (2007) The immune effects of trycats (tryptophan catabolites along the IDO pathway): relevance for depression—and other conditions characterized by tryptophan depletion induced by inflammation. Neuro Endocrinol Lett 28(6):826–831

    CAS  PubMed  Google Scholar 

  38. Myint AM, Kim YK, Verkerk R, Scharpe S, Steinbusch H, Leonard B (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98(1–2):143–151

    Article  CAS  PubMed  Google Scholar 

  39. Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, Spivey JR, Saito K, Miller AH (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry 15(4):393–403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kaestner F, Hettich M, Peters M, Sibrowski W, Hetzel G, Ponath G, Arolt V, Cassens U, Rothermundt M (2005) Different activation patterns of proinflammatory cytokines in melancholic and non-melancholic major depression are associated with HPA axis activity. J Affect Disord 87(2–3):305–311

    Article  CAS  PubMed  Google Scholar 

  42. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, Bernstein HG, Bogerts B (2008) Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 42(2):151–157

    Article  PubMed  Google Scholar 

  44. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157(1):115–118

    Article  CAS  PubMed  Google Scholar 

  45. Sheline YI (1996) Hippocampal atrophy in major depression: a result of depression-induced neurotoxicity? Mol Psychiatry 1(4):298–299

    CAS  PubMed  Google Scholar 

  46. Frodl T, Meisenzahl EM, Zetzsche T, Born C, Groll C, Jager M, Leinsinger G, Bottlender R, Hahn K, Moller HJ (2002) Hippocampal changes in patients with a first episode of major depression. Am J Psychiatry 159(7):1112–1118

    Article  PubMed  Google Scholar 

  47. Ashtari M, Greenwald BS, Kramer-Ginsberg E, Hu J, Wu H, Patel M, Aupperle P, Pollack S (1999) Hippocampal/amygdala volumes in geriatric depression. Psychol Med 29(3):629–638

    Article  CAS  PubMed  Google Scholar 

  48. Axelson DA, Doraiswamy PM, McDonald WM, Boyko OB, Tupler LA, Patterson LJ, Nemeroff CB, Ellinwood EH Jr, Krishnan KR (1993) Hypercortisolemia and hippocampal changes in depression. Psychiatry Res 47(2):163–173

    Article  CAS  PubMed  Google Scholar 

  49. Coffey CE, Wilkinson WE, Weiner RD, Parashos IA, Djang WT, Webb MC, Figiel GS, Spritzer CE (1993) Quantitative cerebral anatomy in depression. A controlled magnetic resonance imaging study. Arch Gen Psychiatry 50(1):7–16

    Article  CAS  PubMed  Google Scholar 

  50. Pantel J, Schroder J, Essig M, Popp D, Dech H, Knopp MV, Schad LR, Eysenbach K, Backenstrass M, Friedlinger M (1997) Quantitative magnetic resonance imaging in geriatric depression and primary degenerative dementia. J Affect Disord 42(1):69–83

    Article  CAS  PubMed  Google Scholar 

  51. Rusch BD, Abercrombie HC, Oakes TR, Schaefer SM, Davidson RJ (2001) Hippocampal morphometry in depressed patients and control subjects: relations to anxiety symptoms. Biol Psychiatry 50(12):960–964

    Article  CAS  PubMed  Google Scholar 

  52. Vakili K, Pillay SS, Lafer B, Fava M, Renshaw PF, Bonello-Cintron CM, Yurgelun-Todd DA (2000) Hippocampal volume in primary unipolar major depression: a magnetic resonance imaging study. Biol Psychiatry 47(12):1087–1090

    Article  CAS  PubMed  Google Scholar 

  53. Monkul ES, Hatch JP, Nicoletti MA, Spence S, Brambilla P, Lacerda AL, Sassi RB, Mallinger AG, Keshavan MS, Soares JC (2007) Fronto-limbic brain structures in suicidal and non-suicidal female patients with major depressive disorder. Mol Psychiatry 12(4):360–366

    Article  CAS  PubMed  Google Scholar 

  54. Kemmerer M, Nasrallah HA, Sharma S, Olson SC, Martin R, Lynn MB (1994) Increased hippocampal volume in bipolar disorder. Biol Psychiatry 35(9):626

    Article  Google Scholar 

  55. Swayze VW II, Andreasen NC, Alliger RJ, Yuh WT, Ehrhardt JC (1992) Subcortical and temporal structures in affective disorder and schizophrenia: a magnetic resonance imaging study. Biol Psychiatry 31(3):221–240

    Article  PubMed  Google Scholar 

  56. Hauser P, Altshuler LL, Berrettini W, Dauphinais ID, Gelernter J, Post RM (1989) Temporal lobe measurement in primary affective disorder by magnetic resonance imaging. J Neuropsychiatry Clin Neurosci 1(2):128–134

    Article  CAS  PubMed  Google Scholar 

  57. Hsieh MH, McQuoid DR, Levy RM, Payne ME, MacFall JR, Steffens DC (2002) Hippocampal volume and antidepressant response in geriatric depression. Int J Geriatr Psychiatry 17(6):519–525

    Article  PubMed  Google Scholar 

  58. Mervaala E, Fohr J, Kononen M, Valkonen-Korhonen M, Vainio P, Partanen K, Partanen J, Tiihonen J, Viinamaki H, Karjalainen AK, Lehtonen J (2000) Quantitative MRI of the hippocampus and amygdala in severe depression. Psychol Med 30(1):117–125

    Article  CAS  PubMed  Google Scholar 

  59. Shah PJ, Ebmeier KP, Glabus MF, Goodwin GM (1998) Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. Br J Psychiatry 172:527–532

    Article  CAS  PubMed  Google Scholar 

  60. Steffens DC, Byrum CE, McQuoid DR, Greenberg DL, Payne ME, Blitchington TF, MacFall JR, Krishnan KR (2000) Hippocampal volume in geriatric depression. Biol Psychiatry 48(4):301–309

    Article  CAS  PubMed  Google Scholar 

  61. MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, Nahmias C, Young LT (2003) Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 100(3):1387–1392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kwidzinski E, Bunse J, Aktas O, Richter D, Mutlu L, Zipp F, Nitsch R, Bechmann I (2005) Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. Faseb J 19(10):1347–1349

    CAS  PubMed  Google Scholar 

  63. Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62(1):63–77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Block W, Traber F, von Widdern O, Metten M, Schild H, Maier W, Zobel A, Jessen F (2009) Proton MR spectroscopy of the hippocampus at 3 T in patients with unipolar major depressive disorder: correlates and predictors of treatment response. Int J Neuropsychopharmacol 12(3):415–422

    Article  CAS  PubMed  Google Scholar 

  65. Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Grant R (2011) Changes in kynurenine pathway metabolism in the brain, liver and kidney of aged female wistar rats. FEBS J 278(22):4425–4434

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Gabriela Meyer-Lotz and Kathrin Paelchen provided excellent technical assistance. Prof. Christian Mawrin (Department of Neuropathology, University of Magdeburg, Germany) performed the routine neuropathological examinations of all tested brains.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Steiner.

Additional information

Mandy Busse and Stefan Busse have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busse, M., Busse, S., Myint, A.M. et al. Decreased quinolinic acid in the hippocampus of depressive patients: evidence for local anti-inflammatory and neuroprotective responses?. Eur Arch Psychiatry Clin Neurosci 265, 321–329 (2015). https://doi.org/10.1007/s00406-014-0562-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-014-0562-0

Keywords

Navigation