Skip to main content
Log in

Is the spread of excitation different between adults and children cochlear implants users?

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

While cochlea is adult size at birth, etiologies and bone density may differ between children and adults. Differences in neural response thresholds (tNRT) and the spread of excitation (SOE) width may impact the use of artificial intelligence algorithms in speech processor fitting.

Aim

To identify whether neural response telemetry threshold and spread of excitation width are similar in adults and children.

Methods

Retrospective cross-sectional study approved by the Ethical Board. Intraoperative tNRT and SOE recordings of consecutive cochlear implant surgeries in adults and children implanted with Cochlear devices (Cochlear™, Australia) were selected. SOE was recorded on electrode 11 (or adjacent, corresponding to the medial region of the cochlea) through the standard forward-masking technique in Custom Sound EP software, which provides SOE width in millimeters. Statistical comparison between adults and children was performed using the Mann–Whitney test (p ≤ 0.05).

Results

Of 1282 recordings of intraoperative evaluations, 414 measurements were selected from children and adults. Despite the tNRT being similar between adults and children, SOE width was significantly different, with lower values in children with perimodiolar arrays. Besides, it was observed that there is a difference in the electrode where the SOE function peak occurred, more frequently shifted to electrode 12 in adults implanted. In straight arrays, there was no difference in any of the parameters analyzed on electrode 11.

Conclusion

Although eCAP thresholds are similar, SOE measurements differ between adults and children in perimodiolar electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during this study are available from the corresponding authors on reasonable request.

References

  1. Abbas PJ, Brown CJ, Shallop JK, Firszt JB, Hughes ML, Hong SH, Staller SJ (1999) Summary of results using the nucleus CI24M implant to record the electrically evoked compound action potential. Ear Hear 20(1):45–49

    Article  CAS  PubMed  Google Scholar 

  2. Cafarelli Dees D, Dillier N, Lai WK, von Wallenberg E, van Dijk B, Akdas F, Aksit M, Batman C, Beynon A, Burdo S, Chanal J-M, Collet L, Conway M, Coudert C, Craddock L, Cullington H, Deggouj N, Fraysse B, Grabel S, Kiefer J, Kiss JG, Lenarz T, Mair A, Maune S, Müller-Deile J, Piron J-P, Razza S, Tasche C, Thai-Van H, Toth F, Truy E, Uziel A, Smoorenburg GF (2005) Normative findings of electrically evoked compound action potential measurements using the neural response telemetry of the Nucleus CI24M cochlear implant system. Audiol Neurootol 10(2):105–116. https://doi.org/10.1159/000083366

    Article  CAS  PubMed  Google Scholar 

  3. Brown CJ, Hughes ML, Luk B, Abbas PJ, Wolaver A, Gervais J (2000) The relationship between EAP and EABR thresholds and levels used to program the nucleus 24 speech processor: data from adults. Ear Hear 21(2):151–163

    Article  CAS  PubMed  Google Scholar 

  4. Thai-Van H, Truy E, Charasse B, Boutitie F, Chanal JM, Cochard N, Piron JP, Ribas S, Deguine O, Fraysse B, Mondain M, Uziel A, Collet L (2004) Modeling the relationship between psychophysical perception and electrically evoked compound action potential threshold in young cochlear implant recipients: clinical implications for implant fitting. Clin Neurophysiol 115(12):2811–2824. https://doi.org/10.1016/j.clinph.2004.06.024

    Article  PubMed  Google Scholar 

  5. Franck KH, Norton SJ (2001) Estimation of psychophysical levels using the electrically evoked compound action potential measured with the neural response telemetry capabilities of Cochlear Corporation’s CI24M device. Ear Hear 22(4):289–299. https://doi.org/10.1097/00003446-200108000-00004

    Article  CAS  PubMed  Google Scholar 

  6. Smoorenburg GF, Willeboer C, van Dijk JE (2002) Speech perception in nucleus CI24M cochlear implant users with processor settings based on electrically evoked compound action potential thresholds. Audiol Neurootol 7(6):335–347. https://doi.org/10.1159/000066154

    Article  PubMed  Google Scholar 

  7. Lai WK, Aksit M, Akdas F, Dillier N (2004) Longitudinal behaviour of neural response telemetry (NRT) data and clinical implications. Int J Audiol 43(5):252–263. https://doi.org/10.1080/14992020400050034

    Article  PubMed  Google Scholar 

  8. Potts LG, Skinner MW, Gotter BD, Strube MJ, Brenner CA (2007) Relation between neural response telemetry thresholds, T- and C-levels, and loudness judgments in 12 adult nucleus 24 cochlear implant recipients. Ear Hear 28(4):495–511

    Article  PubMed  Google Scholar 

  9. Muhaimeed HA, Anazy FA, Hamed O, Shubair E (2010) Correlation between NRT measurement level and behavioral levels in pediatrics cochlear implant patients. Int J Pediatr Otorhinolaryngol 74(4):356–360. https://doi.org/10.1016/j.ijporl.2009.12.017

    Article  PubMed  Google Scholar 

  10. Spivak L, Auerbach C, Vambutas A, Geshkovich S, Wexler L, Popecki B (2011) Electrical compound action potentials recorded with automated neural response telemetry: threshold changes as a function of time and electrode position. Ear Hear 32(1):104–113

    Article  PubMed  Google Scholar 

  11. McKay CM, Chandan K, Akhoun I, Siciliano C, Kluk K (2013) Can ECAP measures be used for totally objective programming of cochlear implants? J Assoc Res Otolaryngol 14(6):879–890. https://doi.org/10.1007/s10162-013-0417-9

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chauhan I, Swami H, Natraj R (2021) A study on relationship between neural response telemetry and behavioural threshold/comfort levels in children with cochlear implant. Med J Armed Forces India 77(2):224–229. https://doi.org/10.1016/j.mjafi.2020.10.011

    Article  PubMed  Google Scholar 

  13. Wolfe J, Kasulis H (2008) Relationships among objective measures and speech perception in adult users of the HiResolution Bionic Ear. Cochlear Implants Int 9(2):70–81. https://doi.org/10.1179/cim.2008.9.2.70

    Article  PubMed  Google Scholar 

  14. Browning LM, Nie Y, Rout A, Heiner M (2020) Audiologists’ preferences in programming cochlear implants: a preliminary report. Cochlear Implants Int 21(4):179–191. https://doi.org/10.1080/14670100.2019.1708553

    Article  PubMed  Google Scholar 

  15. McKay CM, Fewster L, Dawson P (2005) A different approach to using neural response telemetry for automated cochlear implant processor programming. Ear Hear 26:38S-44S

    Article  PubMed  Google Scholar 

  16. Xi X, Ji F, Han D, Hong M, Chen A (2009) Electrode interaction in cochlear implant recipients: comparison of straight and contour electrode arrays. ORL J Otorhinolaryngol Relat Spec 71(4):228–237

    Article  PubMed  Google Scholar 

  17. Holden LK, Firszt JB, Reeder RM, Uchanski RM, Dwyer NY, Holden TA (2016) Factors affecting outcomes in cochlear implant recipients implanted with a perimodiolar electrode array located in scala tympani. Otol Neurotol 37(10):1662–1668. https://doi.org/10.1097/MAO.0000000000001241

    Article  PubMed  PubMed Central  Google Scholar 

  18. da Silva JC, Goffi-Gomez MVS, Magalhães AT, Tsuji RK, Bento RF (2021) Is the spread of excitation width correlated to the speech recognition in cochlear implant users? Eur Arch Otorhinolaryngol 278(6):1815–1820. https://doi.org/10.1007/s00405-020-06260-9

    Article  PubMed  Google Scholar 

  19. Abbas PJ, Hughes ML, Brown CJ, Miller CA, South H (2004) Channel interaction in cochlear implant users evaluated using the electrically evoked compound action potential. Audiol Neurootol 9:203–213

    Article  PubMed  Google Scholar 

  20. Zahara D, Dewi RD, Aboet A, Putranto FM, Lubis ND, Ashar T (2019) Variations in cochlear size of cochlear implant candidates. Int Arch Otorhinolaryngol 23(2):184–190. https://doi.org/10.1055/s-0038-1661360. (Epub 2018 Oct 24. PMID: 30956703; PMCID: PMC6449142)

    Article  PubMed  Google Scholar 

  21. van Dijk B, Botros AM, Battmer RD, Begall K, Dillier N, Hey M, Lai WK, Lenarz T, Laszig R, Morsnowski A, Müller-Deile J, Psarros C, Shallop J, Weber B, Wesarg T, Zarowski A, Offeciers E (2007) Clinical results of AutoNRT, a completely automatic ECAP recording system for cochlear implants. Ear Hear 28(4):558–570

    Article  PubMed  Google Scholar 

  22. Hughes ML, Stille LJ (2010) Effect of stimulus and recording parameters on spatial spread of excitation and masking patterns obtained with the electrically evoked compound action potential in cochlear implant. Ear Hear 31(5):679–692

    Article  PubMed  PubMed Central  Google Scholar 

  23. Patrick JF, Busby PA, Gibson PJ (2006) The development of the nucleus freedom cochlear implant system. Trends Amplif 10(4):175–200

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lorens A, Walkowiak A, Piotrowska A, Skarzynski H, Anderson I (2004) ESRT and MCL correlations in experienced paediatric cochlear implant users. Cochlear Implants Int 5(1):28–37. https://doi.org/10.1002/cii.121

    Article  PubMed  Google Scholar 

  25. Wolfe J, Gilbert M, Schafer E et al (2017) Optimizations for the electrically-evoked stapedial reflex threshold measurement in cochlear implant recipients. Ear Hear 38(2):255–261. https://doi.org/10.1097/AUD.0000000000000390

    Article  PubMed  Google Scholar 

  26. Grolman W, Maat A, Werdam F et al (2009) Spread of Excitation measurements for the detection of electrode array foldovers: A prospective Study comparing 3-dimensional rotational X-Ray and intraoperative spread of excitation measurements. Otol Neurotol 30:27–33

    Article  PubMed  Google Scholar 

  27. Walkowiak A, Kostek B, Lorens A, Obrycka A, Wasowski A, Skarzynski H (2010) Spread of excitation (SoE)—a non-invasive assessment of cochlear implant electrode placement. Cochlear Implants Int 11(Suppl 1):479–481

    Article  PubMed  Google Scholar 

  28. van der Beek FB, Briaire JJ, Frijns JHM (2012) Effects of parameter manipulations on spread of excitation measured with electrically-evoked compound action potentials. Int J Audiol 51:465–474

    Article  PubMed  Google Scholar 

  29. Scheperle RA, Abbas PJ (2015) Peripheral and central contributions to cortical responses in cochlear implant users. Ear Hear 36(4):430–440. https://doi.org/10.1097/AUD.0000000000000143

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zuniga MG, Rivas A, Hedley-Williams A, Gifford RH, Dwyer R, Dawant BM, Sunderhaus LW, Hovis KL, Wanna GB, Noble JH, Labadie RF (2017) Tip fold-over in cochlear implantation: case series. Otol Neurotol 38(2):199–206. https://doi.org/10.1097/MAO.0000000000001283

    Article  PubMed  PubMed Central  Google Scholar 

  31. Long CJ, Holden TA, McClelland GH, Parkinson WS, Shelton C, Kelsall DC, Smith ZM (2014) Examining the electro-neural interface of cochlear implant users using psychophysics, CT scans, and speech understanding. J Assoc Res Otolaryngol 15(2):293–304

    Article  PubMed  PubMed Central  Google Scholar 

  32. Davis TJ, Zhang D, Gifford RH, Dawant BM, Labadie RF, Noble JH (2016) Relationship between electrode-to-modiolus distance and current levels for adults with cochlear implants. Otol Neurotol 37(1):31–37. https://doi.org/10.1097/MAO.0000000000000896

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cohen LT, Saunders E, Richardson LM (2004) Spatial spread of neural excitation: comparison of compound action potential and forward-masking data in cochlear implant recipients. Int J Audiol 43(6):346–355

    Article  PubMed  Google Scholar 

  34. Tsuji RK, Goffi-Gomez MV, Peralta CO, Guedes MC, Magalhães AT, Neto RB, Bento RF (2009) Neural response thresholds in the Nucleus Contour cochlear implant before and after stylet removal. Acta Otolaryngol 129(11):1330–1336

    Article  PubMed  Google Scholar 

  35. Carvalho B, Hamerschmidt R, Wiemes G (2015) Intraoperative neural response telemetry and neural recovery function: a comparative study between adults and children. Int Arch Otorhinolaryngol 19(1):10–15. https://doi.org/10.1055/s-0034-1372509

    Article  PubMed  Google Scholar 

  36. Scorpecci A, D’Elia A, Malerba P et al (2016) Maps created using a new objective procedure (C-NRT) correlate with behavioral, loudness-balanced maps: a study in adult cochlear implant users. Eur Arch Otorhinolaryngol 273(12):4167–4173. https://doi.org/10.1007/s00405-016-4115-1

    Article  PubMed  Google Scholar 

  37. Eisen MD, Franck KH (2005) Electrode interaction in pediatric cochlear implant subjects. J Assoc Res Otolaryngol 6(2):160–170. https://doi.org/10.1007/s10162-005-5057-2

    Article  PubMed  PubMed Central  Google Scholar 

  38. Busby PA, Battmer RD, Pesch J (2008) Electrophysiological spread of excitation and pitch perception for dual and single electrodes using the Nucleus Freedom cochlear implant. Ear Hear 29(6):853–864. https://doi.org/10.1097/AUD.0b013e318181a878

    Article  PubMed  Google Scholar 

  39. Kashio A, Tejani VD, Scheperle RA, Brown CJ, Abbas PJ (2016) Exploring the source of neural responses of different latencies obtained from different recording electrodes in cochlear implant users. Audiol Neurootol 21(3):141–149

    Article  PubMed  Google Scholar 

  40. Pietsch M, Schurzig D, Salcher R et al (2022) Variations in microanatomy of the human modiolus require individualized cochlear implantation. Sci Rep 12(1):5047. https://doi.org/10.1038/s41598-022-08731-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nadol JB Jr (1997) Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation. Otolaryngol Head Neck Surg 117(3 Pt 1):220–228. https://doi.org/10.1016/s0194-5998(97)70178-5

    Article  PubMed  Google Scholar 

  42. Ketterer MC, Aschendorff A, Arndt S et al (2018) The influence of cochlear morphology on the final electrode array position. Eur Arch Otorhinolaryngol 275(2):385–394. https://doi.org/10.1007/s00405-017-4842-y

    Article  CAS  PubMed  Google Scholar 

  43. Botros A, Psarros C (2010) Neural response telemetry reconsidered: II. The influence of neural population on the ECAP recovery function and refractoriness. Ear Hear 31(3):380–391

    Article  PubMed  Google Scholar 

  44. Plant K, Law MA, Whitford L et al (2005) Evaluation of streamlined programming procedures for the Nucleus cochlear implant with the Contour electrode array. Ear Hear 26(6):651–668. https://doi.org/10.1097/01.aud.0000188201.86799.01

    Article  PubMed  Google Scholar 

  45. Bierer JA (2010) Probing the electrode-neuron interface with focused cochlear implant stimulation. Trends Amplif 14(2):84–95. https://doi.org/10.1177/1084713810375249

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pfingst BE, Zhou N, Colesa DJ et al (2015) Importance of cochlear health for implant function. Hear Res 322:77–88. https://doi.org/10.1016/j.heares.2014.09.009

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MVSGG conceived the research idea and design. MVSGG, ACHH, PAS, ATM, TS, CC participated in the collection, analysis, and interpretation of data. MVSGG, FMC, ACHH, PASS, ATM, TS, CC contributed to the writing and reviewing the article. RKT and RBN participated in the supervision, clinical and logistical support of the study. The authors did not receive support from any organization for the submitted work. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Corresponding author

Correspondence to Maria Valéria Schmidt Goffi-Gomez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goffi-Gomez, M.V.S., Corrêa, F.M.d., Magalhães, A.T. et al. Is the spread of excitation different between adults and children cochlear implants users?. Eur Arch Otorhinolaryngol (2024). https://doi.org/10.1007/s00405-024-08451-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00405-024-08451-0

Keywords

Navigation