Skip to main content
Log in

Relationships between bilateral auditory brainstem activity and inter-implant interval in children with cochlear implants

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effect of the interval between bilateral cochlear implantation on the development of bilateral peripheral auditory pathways as revealed by the electrically evoked auditory brainstem response (EABR).

Methods

Fifty-eight children with profound bilateral sensorineural hearing loss were recruited. Among them, 33 children received sequential bilateral cochlear implants (CIs), and 25 children received simultaneous bilateral CIs. The bilateral EABRs evoked by electrical stimulation from the CI electrode were recorded on the day of second-side CI activation.

Results

The latencies of wave III (eIII) and wave V (eV) were significantly shorter on the first CI side than on the second CI side in children with sequential bilateral CIs but were similar between the two sides in children with simultaneous bilateral CIs. Furthermore, the latencies were prolonged from apical to basal channels along the cochlea in the two groups. In children with sequential CIs, the inter-implant interval was negatively correlated with the eV latency on the first CI side and was positively correlated with bilateral differences in the eIII and eV latencies.

Conclusions

Unilateral CI use promotes the maturation of ipsilateral auditory conduction function. However, a longer inter-implant interval results in more unbalanced development of bilateral auditory brainstem pathways. Bilateral cochlear implantation with no or a short interval is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Lieu JEC, Kenna M, Anne S, Davidson L (2020) Hearing loss in children: a review. JAMA 324(21):2195–2205. https://doi.org/10.1001/jama.2020.17647

    Article  PubMed  Google Scholar 

  2. Asp F, Maki-Torkko E, Karltorp E, Harder H, Hergils L, Eskilsson G, Stenfelt S (2012) Bilateral versus unilateral cochlear implants in children: speech recognition, sound localization, and parental reports. Int J Audiol 51(11):817–832. https://doi.org/10.3109/14992027.2012.705898

    Article  PubMed  Google Scholar 

  3. Culling JF, Jelfs S, Talbert A, Grange JA, Backhouse SS (2012) The benefit of bilateral versus unilateral cochlear implantation to speech intelligibility in noise. Ear Hear 33(6):673–682. https://doi.org/10.1097/AUD.0b013e3182587356

    Article  PubMed  Google Scholar 

  4. Laske RD, Veraguth D, Dillier N, Binkert A, Holzmann D, Huber AM (2009) Subjective and objective results after bilateral cochlear implantation in adults. Otol Neurotol 30(3):313–318. https://doi.org/10.1097/MAO.0b013e31819bd7e6

    Article  PubMed  Google Scholar 

  5. Eskridge HR, Park LR, Brown KD (2021) The impact of unilateral, simultaneous, or sequential cochlear implantation on pediatric language outcomes. Cochlear Implants Int 22(4):187–194. https://doi.org/10.1080/14670100.2020.1871267

    Article  PubMed  Google Scholar 

  6. McRackan TR, Fabie JE, Bhenswala PN, Nguyen SA, Dubno JR (2019) General health quality of life instruments underestimate the impact of bilateral cochlear implantation. Otol Neurotol 40(6):745–753. https://doi.org/10.1097/MAO.0000000000002225

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lammers MJ, Venekamp RP, Grolman W, van der Heijden GJ (2014) Bilateral cochlear implantation in children and the impact of the inter-implant interval. Laryngoscope 124(4):993–999. https://doi.org/10.1002/lary.24395

    Article  PubMed  Google Scholar 

  8. Boons T, Brokx JP, Frijns JH, Peeraer L, Philips B, Vermeulen A, Wouters J, van Wieringen A (2012) Effect of pediatric bilateral cochlear implantation on language development. Arch Pediatr Adolesc Med 166(1):28–34. https://doi.org/10.1001/archpediatrics.2011.748

    Article  PubMed  Google Scholar 

  9. Chadha NK, Papsin BC, Jiwani S, Gordon KA (2011) Speech detection in noise and spatial unmasking in children with simultaneous versus sequential bilateral cochlear implants. Otol Neurotol 32(7):1057–1064. https://doi.org/10.1097/MAO.0b013e3182267de7

    Article  PubMed  Google Scholar 

  10. Illg A, Giourgas A, Kral A, Buchner A, Lesinski-Schiedat A, Lenarz T (2013) Speech comprehension in children and adolescents after sequential bilateral cochlear implantation with long interimplant interval. Otol Neurotol 34(4):682–689. https://doi.org/10.1097/MAO.0b013e31828bb75e

    Article  PubMed  Google Scholar 

  11. Gordon KA, Papsin BC (2009) Benefits of short interimplant delays in children receiving bilateral cochlear implants. Otol Neurotol 30(3):319–331. https://doi.org/10.1097/MAO.0b013e31819a8f4c

    Article  PubMed  Google Scholar 

  12. Strom-Roum H, Laurent C, Wie OB (2012) Comparison of bilateral and unilateral cochlear implants in children with sequential surgery. Int J Pediatr Otorhinolaryngol 76(1):95–99. https://doi.org/10.1016/j.ijporl.2011.10.009

    Article  PubMed  Google Scholar 

  13. Gordon KA, Valero J, van Hoesel R, Papsin BC (2008) Abnormal timing delays in auditory brainstem responses evoked by bilateral cochlear implant use in children. Otol Neurotol 29(2):193–198. https://doi.org/10.1097/mao.0b013e318162514c

    Article  PubMed  Google Scholar 

  14. Gordon KA, Valero J, Papsin BC (2007) Binaural processing in children using bilateral cochlear implants. NeuroReport 18(6):613–617. https://doi.org/10.1097/WNR.0b013e3280b10c15

    Article  PubMed  Google Scholar 

  15. Gordon KA, Valero J, Papsin BC (2007) Auditory brainstem activity in children with 9–30 months of bilateral cochlear implant use. Hear Res 233(1–2):97–107. https://doi.org/10.1016/j.heares.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  16. Koo TK, Bartels LJ, Allen KP, Danner CJ (2020) The relationship of inter-implant time and hearing outcomes for bilateral cochlear implants. Am J Otolaryngol 41(3):102454. https://doi.org/10.1016/j.amjoto.2020.102454

    Article  PubMed  Google Scholar 

  17. Kim JS, Kim LS, Jeong SW (2013) Functional benefits of sequential bilateral cochlear implantation in children with long inter-stage interval between two implants. Int J Pediatr Otorhinolaryngol 77(2):162–169. https://doi.org/10.1016/j.ijporl.2012.10.010

    Article  PubMed  Google Scholar 

  18. Gordon KA, Wong DD, Papsin BC (2013) Bilateral input protects the cortex from unilaterally-driven reorganization in children who are deaf. Brain 136(Pt 5):1609–1625. https://doi.org/10.1093/brain/awt052

    Article  PubMed  Google Scholar 

  19. Kelly AS, Purdy SC, Thorne PR (2005) Electrophysiological and speech perception measures of auditory processing in experienced adult cochlear implant users. Clin Neurophysiol 116(6):1235–1246. https://doi.org/10.1016/j.clinph.2005.02.011

    Article  PubMed  Google Scholar 

  20. Gallego S, Frachet B, Micheyl C, Truy E, Collet L (1998) Cochlear implant performance and electrically-evoked auditory brain-stem response characteristics. Electroencephalogr Clin Neurophysiol 108(6):521–525. https://doi.org/10.1016/s0168-5597(98)00030-6

    Article  CAS  PubMed  Google Scholar 

  21. Chen L, Zhang JG, Zhu HY, Hou XY, Tang ZQ, Sun JW, Sun JQ, Guo XT (2023) Electrically evoked auditory brainstem responses in children fitted with hearing aids prior to cochlear implantation. Trends Hear 27:23312165221148850. https://doi.org/10.1177/23312165221148846

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhu HY, Sun JQ, Sun JW, Guo XT (2023) The effect of cochlear size on electrically evoked auditory brainstem responses in deaf children. Laryngoscope Investig Otolarygol 8(2):532–537. https://doi.org/10.1002/lio2.1029

    Article  Google Scholar 

  23. Gordon KA, Papsin BC, Harrison RV (2006) An evoked potential study of the developmental time course of the auditory nerve and brainstem in children using cochlear implants. Audiol Neurootol 11(1):7–23. https://doi.org/10.1159/000088851

    Article  PubMed  Google Scholar 

  24. Guiraud J, Gallego S, Arnold L, Boyle P, Truy E, Collet L (2007) Effects of auditory pathway anatomy and deafness characteristics? (1): on electrically evoked auditory brainstem responses. Hear Res 223(1–2):48–60. https://doi.org/10.1016/j.heares.2006.09.014

    Article  PubMed  Google Scholar 

  25. Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90(3):983–1012. https://doi.org/10.1152/physrev.00026.2009

    Article  CAS  PubMed  Google Scholar 

  26. Hawley ML, Litovsky RY, Colburn HS (1999) Speech intelligibility and localization in a multi-source environment. J Acoust Soc Am 105(6):3436–3448. https://doi.org/10.1121/1.424670

    Article  ADS  CAS  PubMed  Google Scholar 

  27. van Hoesel RJ (2004) Exploring the benefits of bilateral cochlear implants. Audiol Neurootol 9(4):234–246. https://doi.org/10.1159/000078393

    Article  PubMed  Google Scholar 

  28. Gordon K, Henkin Y, Kral A (2015) Asymmetric hearing during development: the aural preference syndrome and treatment options. Pediatrics 136(1):141–153. https://doi.org/10.1542/peds.2014-3520

    Article  PubMed  Google Scholar 

  29. Uecker FC, Szczepek A, Olze H (2019) Pediatric bilateral cochlear implantation: simultaneous versus sequential surgery. Otol Neurotol 40(4):e454–e460. https://doi.org/10.1097/MAO.0000000000002177

    Article  PubMed  Google Scholar 

  30. Dalgic A, Atsal G, Yildirim O, Edizer DT, Ozay MB, Olgun L (2021) Bilateral cochlear implantation in children: simultaneously or in consecutive sessions? J Laryngol Otol 135(4):327–331. https://doi.org/10.1017/S0022215121000931

    Article  CAS  PubMed  Google Scholar 

  31. Sparreboom M, Beynon AJ, Snik AF, Mylanus EA (2010) Electrically evoked auditory brainstem responses in children with sequential bilateral cochlear implants. Otol Neurotol 31(7):1055–1061. https://doi.org/10.1097/MAO.0b013e3181dbb33d

    Article  PubMed  Google Scholar 

  32. Deniz B, Kara E, Polat Z, Deniz R, Atas A (2021) Changes in electrically evoked auditory brainstem responses in children with sequential bilateral cochlear implants. Int J Pediatr Otorhinolaryngol 141:110555. https://doi.org/10.1016/j.ijporl.2020.110555

    Article  PubMed  Google Scholar 

  33. Sharma A, Dorman M, Spahr A, Todd NW (2002) Early cochlear implantation in children allows normal development of central auditory pathways. Ann Otol Rhinol Laryngol Suppl 189:38–41. https://doi.org/10.1177/00034894021110s508

    Article  PubMed  Google Scholar 

  34. Gordon KA, Papsin BC, Harrison RV (2003) Activity-dependent developmental plasticity of the auditory brain stem in children who use cochlear implants. Ear Hear 24(6):485–500. https://doi.org/10.1097/01.AUD.0000100203.65990.D4

    Article  PubMed  Google Scholar 

  35. Jiwani S, Papsin BC, Gordon KA (2013) Central auditory development after long-term cochlear implant use. Clin Neurophysiol 124(9):1868–1880. https://doi.org/10.1016/j.clinph.2013.03.023

    Article  PubMed  Google Scholar 

  36. Zhang JG, Chen L, Li P, Sun JW, Guo XT, Sun JQ (2021) Effect of unilateral cochlear implant use on contralateral electrically evoked auditory brainstem responses to round window membrane electrical stimulation. Acta Otolaryngol 141(6):588–593. https://doi.org/10.1080/00016489.2021.1906443

    Article  CAS  PubMed  Google Scholar 

  37. Kishimoto I, Yamazaki H, Naito Y, Moroto S, Yamazaki T (2019) First implant-induced changes in rostral brainstem impair second implant outcomes in sequential bilateral cochlear implant children with long inter-implant delay. Otol Neurotol 40(4):e364–e372. https://doi.org/10.1097/MAO.0000000000002130

    Article  PubMed  Google Scholar 

  38. Thai-Van H, Cozma S, Boutitie F, Disant F, Truy E, Collet L (2007) The pattern of auditory brainstem response wave V maturation in cochlear-implanted children. Clin Neurophysiol 118(3):676–689. https://doi.org/10.1016/j.clinph.2006.11.010

    Article  PubMed  Google Scholar 

  39. Gordon KA, Papsin BC, Harrison RV (2007) Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children. Clin Neurophysiol 118(8):1671–1684. https://doi.org/10.1016/j.clinph.2007.04.030

    Article  CAS  PubMed  Google Scholar 

  40. Raphael Y, Altschuler RA (2003) Structure and innervation of the cochlea. Brain Res Bull 60(5–6):397–422. https://doi.org/10.1016/s0361-9230(03)00047-9

    Article  PubMed  Google Scholar 

  41. Erixon E, Hogstorp H, Wadin K, Rask-Andersen H (2009) Variational anatomy of the human cochlea: implications for cochlear implantation. Otol Neurotol 30(1):14–22. https://doi.org/10.1097/MAO.0b013e31818a08e8

    Article  PubMed  Google Scholar 

  42. Glueckert R, Pfaller K, Kinnefors A, Rask-Andersen H, Schrott-Fischer A (2005) The human spiral ganglion: new insights into ultrastructure, survival rate and implications for cochlear implants. Audiol Neurootol 10(5):258–273. https://doi.org/10.1159/000086000

    Article  PubMed  Google Scholar 

  43. Ekdale EG (2016) Form and function of the mammalian inner ear. J Anat 228(2):324–337. https://doi.org/10.1111/joa.12308

    Article  PubMed  Google Scholar 

  44. Nadol JB Jr (1997) Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation. Otolaryngol Head Neck Surg 117(3 Pt 1):220–228. https://doi.org/10.1016/s0194-5998(97)70178-5

    Article  PubMed  Google Scholar 

  45. Shepherd RK, Javel E (1997) Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status. Hear Res 108(1–2):112–144. https://doi.org/10.1016/s0378-5955(97)00046-4

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grants 82201278 and 82271180); Natural Science Foundation of Anhui Province (Grants 2208085MH231 and 2008085QH429); and the Key Research and Development Program of Anhui Province (Grant 201904a07020084).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Wu Sun, Jia-Qiang Sun or Xiao-Tao Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The protocols and experimental procedures in the present study were reviewed and approved by the Anhui Provincial Hospital Ethics Committee (No. 2019-KY-60).

Informed consent

Each child’s guardians filled out an informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YL., Chen, L., Zhu, HY. et al. Relationships between bilateral auditory brainstem activity and inter-implant interval in children with cochlear implants. Eur Arch Otorhinolaryngol 281, 1735–1743 (2024). https://doi.org/10.1007/s00405-023-08285-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-023-08285-2

Keywords

Navigation