Skip to main content

Advertisement

Log in

Normal linear and non-linear cochlear mechanisms and efferent system functioning in individuals with misophonia

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Background

Misophonia, a condition characterized by heightened sensitivity and strong emotional reactions to specific sounds, has sparked considerable interest and debate regarding its underlying auditory mechanisms. The study aimed to understand the auditory underpinnings of two such potential inner ear systems, non-linear and linear outer hair cell functioning along with auditory efferent functioning in individuals with misophonia.

Methods

40 ears with misophonia (20 participants) and 37 ears without misophonia (20 participants), both having normal hearing sensitivity were included in this study. Transient evoked otoacoustic emissions (TEOAEs) and distortion product otoacoustic emissions (DPOAEs) were obtained in two conditions (with and without contralateral noise).

Results

Results of independent-samples t-test showed no statistically significant difference (p > 0.05) in the absolute amplitudes of both TEOAEs and DPOAEs between the individuals with and without misophonia. There was no statistically significant difference (p > 0.05) observed in the magnitude of suppression amplitude between the two groups for in both TEOAEs and DPOAEs between individuals with and without misophonia.

Conclusion

These results suggest that the cochlear and efferent auditory underpinnings examined in this study may not be major contributors to the development or manifestation of misophonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data corresponding to the one used in the study can be obtained from the author using personal email correspondance.

Abbreviations

OAEs:

Otoacoustic emissions

TEOAEs:

Transient evoked otoacoustic emissions

DPOAEs:

Distortion product otoacoustic emissions

MOCB:

Medial olivocochlear bundle

References

  1. Schröder A, Vulink N, Denys D (2013) Misophonia: diagnostic criteria for a new psychiatric disorder. PLoS ONE 8:e54706. https://doi.org/10.1371/journal.pone.0054706

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Patel NM, Fameen R, Shafeek N, Prabhu P (2023) Prevalence of Misophonia in College Going Students of India: A Preliminary Survey. Indian J Otolaryngol Head Neck Surg 75:374–378. https://doi.org/10.1007/s12070-022-03266-z

    Article  PubMed  Google Scholar 

  3. Vitoratou S, Hayes C, Uglik-Marucha N et al (2023) Misophonia in the UK: Prevalence and norms from the S-Five in a UK representative sample. PLoS ONE 18:e0282777. https://doi.org/10.1371/journal.pone.0282777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Edelstein M, Brang D, Rouw R, Ramachandran VS (2013) Misophonia: physiological investigations and case descriptions. Front Hum Neurosci 7:296. https://doi.org/10.3389/FNHUM.2013.00296

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aryal S, Prabhu P (2023) Understanding misophonia from an audiological perspective: a systematic review. Eur Arch Otorhinolaryngol 280:1529–1545. https://doi.org/10.1007/s00405-022-07774-0

    Article  PubMed  Google Scholar 

  6. Jastreboff PJ, Jastreboff MM (2003) Tinnitus retraining therapy for patients with tinnitus and decreased sound tolerance. Otolaryngol Clin North Am 36:321–336. https://doi.org/10.1016/S0030-6665(02)00172-X

    Article  PubMed  Google Scholar 

  7. Jastreboff PJ (2007) Tinnitus retraining therapy. Prog Brain Res 166:415–423. https://doi.org/10.1016/S0079-6123(07)66040-3

    Article  CAS  PubMed  Google Scholar 

  8. Thabet EM (2009) Evaluation of tinnitus patients with normal hearing sensitivity using TEOAEs and TEN test. Auris Nasus Larynx 36:633–636. https://doi.org/10.1016/J.ANL.2009.01.002

    Article  PubMed  Google Scholar 

  9. Sarathy K, Jaya V (2017) Contralateral suppression of TEOAE in patients with tinnitus and normal hearing. Biomed J Sci Tech Res 1:1582–1584. https://doi.org/10.26717/BJSTR.2017.01.000492

    Article  Google Scholar 

  10. Alshabory HF, Gabr TA, Kotait MA (2022) Distortion product otoacoustic emissions (DPOAEs) in tinnitus patients. Int Arch Otorhinolaryngol 26:46–57. https://doi.org/10.1055/S-0040-1722248

    Article  Google Scholar 

  11. Xiong B, Liu Z, Liu Q et al (2019) Missed hearing loss in tinnitus patients with normal audiograms. Hear Res 384:107826. https://doi.org/10.1016/J.HEARES.2019.107826

    Article  PubMed  Google Scholar 

  12. Schaette R, McAlpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31:13452–13457. https://doi.org/10.1523/JNEUROSCI.2156-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Knudson IM, Shera CA, Melcher JR (2014) Increased contralateral suppression of otoacoustic emissions indicates a hyperresponsive medial olivocochlear system in humans with tinnitus and hyperacusis. J Neurophysiol 112:3197–3208. https://doi.org/10.1152/JN.00576.2014

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schröder A, van Diepen R, Mazaheri A et al (2014) Diminished N1 auditory evoked potentials to oddball stimuli in misophonia patients. Front Behav Neurosci 8:123. https://doi.org/10.3389/fnbeh.2014.00123

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kumar S, Tansley-Hancock O, Sedley W et al (2017) The brain basis for misophonia. Curr Biol 27:527–533. https://doi.org/10.1016/J.CUB.2016.12.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schröder A, Giorgi RS, Van Wingen G et al (2015) Impulsive aggression in misophonia: results from a functional magnetic resonance imaging study. Eur Neuropsychopharmacol 25:S307–S308. https://doi.org/10.1016/S0924-977X(15)30374-6

    Article  Google Scholar 

  17. Schröder A, van Wingen G, Eijsker N et al (2019) Misophonia is associated with altered brain activity in the auditory cortex and salience network. Sci Rep 9:7542. https://doi.org/10.1038/s41598-019-44084-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Eijsker N, Schröder A, Smit DJA et al (2021) Structural and functional brain abnormalities in misophonia. Eur Neuropsychopharmacol 52:62–71. https://doi.org/10.1016/J.EURONEURO.2021.05.013

    Article  CAS  PubMed  Google Scholar 

  19. Schroder AE, Mazaheri A, Petropoulos D et al (2013) A diminished mismatch negativity response in misophonia, a potential marker for aggressive impulsivity. Eur Neuropsychopharmacol 23:S177. https://doi.org/10.1016/S0924-977X(13)70269-4

    Article  Google Scholar 

  20. Delano PH, Elgoyhen AB (2016) Editorial: auditory efferent system: new insights from cortex to cochlea. Front Syst Neurosci 10:50. https://doi.org/10.3389/fnsys.2016.00050

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shera CA (2004) Mechanisms of mammalian otoacoustic emission and their implications for the clinical utility of otoacoustic emissions. Ear Hear 25:86–97. https://doi.org/10.1097/01.AUD.0000121200.90211.83

    Article  PubMed  Google Scholar 

  22. Harrison WA, Norton SJ (1999) Characteristics of transient evoked otoacoustic emissions in normal-hearing and hearing-impaired children. Ear Hear 20:75–86. https://doi.org/10.1097/00003446-199902000-00007

    Article  CAS  PubMed  Google Scholar 

  23. Probst R, Hauser R (1990) Distortion product otoacoustic emissions in normal and hearing-impaired ears. Am J Otolaryngol 11:236–243. https://doi.org/10.1016/0196-0709(90)90083-8

    Article  CAS  PubMed  Google Scholar 

  24. Gorga MP, Neely ST, Bergman BM et al (1993) A comparison of transient-evoked and distortion product otoacoustic emissions in normal-hearing and hearing-impaired subjects. J Acoust Soc Am 94:2639–2648. https://doi.org/10.1121/1.407348

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Liberman MC (2017) Noise-induced and age-related hearing loss: new perspectives and potential therapies. F1000Res 6:927. https://doi.org/10.12688/F1000RESEARCH.11310.1

    Article  PubMed  PubMed Central  Google Scholar 

  26. Asilador A, Llano DA (2021) Top-down inference in the auditory system: potential roles for corticofugal projections. Front Neural Circuits 14:615259. https://doi.org/10.3389/FNCIR.2020.615259

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xiao Z, Suga N (2002) Modulation of cochlear hair cells by the auditory cortex in the mustached bat. Nat Neurosci 5:57–63. https://doi.org/10.1038/NN786

    Article  CAS  PubMed  Google Scholar 

  28. Francis NA, Guinan JJ (2010) Acoustic stimulation of human medial olivocochlear efferents reduces stimulus-frequency and click-evoked otoacoustic emission delays: implications for cochlear filter bandwidths. Hear Res 267:36–45. https://doi.org/10.1016/j.heares.2010.04.009

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wahab NAA, Wahab S, Rahman AHA et al (2016) The hyperactivity of efferent auditory system in patients with schizophrenia: a transient evoked otoacoustic emissions study. Psychiatry Investig 13:82–88. https://doi.org/10.4306/PI.2016.13.1.82

    Article  PubMed  Google Scholar 

  30. Jastreboff PJ, Jastreboff MM (2023) The neurophysiological approach to misophonia: theory and treatment. Front Neurosci 17:895574. https://doi.org/10.3389/fnins.2023.895574

    Article  PubMed  PubMed Central  Google Scholar 

  31. Orlikoff RF, Schiavetti NE, Metz DE (2014) Evaluating research in communication disorders. Pearson Education, London

    Google Scholar 

  32. Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191. https://doi.org/10.3758/BF03193146

    Article  PubMed  Google Scholar 

  33. Elmoazen D, Kozou H, Elabassiery B (2020) Otoacoustic emissions and contralateral suppression in tinnitus sufferers with normal hearing. Egypt J Otolaryngol 36:29. https://doi.org/10.1186/s43163-020-00030-4

    Article  Google Scholar 

  34. Johnson, Marsha, Doizer T (2013) Misophonia assessment questionnaire (MAQ). Revised by Misophonia Institute, Dozier T Livermore, CA. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjvydiy35yBAxVqbmwGHcxxCnUQFnoECBAQAQ&url=https%3A%2F%2Fmisophoniatreatment.com%2Fwp-content%2Fuploads%2F2016%2F02%2FBinder_all_forms.pdf&usg=AOvVaw1CR8-qUWrS_icANO4kVjeS&opi=89978449. Accessed on 6 July 2023

  35. Martin FN, Champlin CA (2000) Reconsidering the limits of normal hearing. J Am Acad Audiol 11:64–66

    Article  CAS  PubMed  Google Scholar 

  36. Cohen J (1988) Statistical power analysis for the behavioural science, 2nd edn. Lawrence Erlbaum Associates, New Jersey

    Google Scholar 

  37. Rosenthal R (1994) Parametric measures of effect size. In: Cooper H, Hedges LV (eds) The handbook of research synthesis. Russell Sage Foundation, New York, pp 231–244

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge with gratitude Prof. M Pushpavathi, Director, All India Institute of Speech and Hearing, Mysore affiliated to the University of Mysore for permitting to conduct the study at the institute. The authors also like to acknowledge the participants for co-operation.

Funding

This is non-funded research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Suraj.

Ethics declarations

Conflict of interest

There is no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suraj, U., Nisha, K.V. & Prabhu, P. Normal linear and non-linear cochlear mechanisms and efferent system functioning in individuals with misophonia. Eur Arch Otorhinolaryngol 281, 1709–1716 (2024). https://doi.org/10.1007/s00405-023-08273-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-023-08273-6

Keywords

Navigation