Skip to main content
Log in

A novel and independent survival prognostic model for OSCC: the functions and prognostic values of RNA-binding proteins

  • Head and Neck
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Background

Oral squamous cell carcinoma (OSCC), exhibiting high morbidity and malignancy, is the most common type of oral cancer. The abnormal expression of RNA-binding proteins (RBPs) plays important roles in the occurrence and progression of cancer. The objective of the present study was to establish a prognostic assessment model of RBPs and to evaluate the prognosis of OSCC patients.

Methods

Gene expression data in The Cancer Genome Atlas (TCGA) were analyzed by univariate Cox regression analysis model that established a novel nine RBPs, which were used to build a prognostic risk model. A multivariate Cox proportional regression model and the survival analysis were used to evaluate the prognostic risk model. Moreover, the receive operator curve (ROC) analysis was tested further the efficiency of prognostic risk model based on data from TCGA database and Gene Expression Omnibus (GEO).

Results

Nine RBPs’ signatures (ACO1, G3BP1, NMD3, RNGTT, ZNF385A, SARS, CARS2, YARS and SMAD6) with prognostic value were identified in OSCC patients. Subsequently, the patients were further categorized into high-risk group and low-risk in the overall survival (OS) and disease-free survival (DFS), and external validation dataset. ROC analysis was significant for both the TCGA and GEO. Moreover, GSEA revealed that patients in the high-risk group significantly enriched in many critical pathways correlated with tumorigenesis than the low, including cell cycle, adheres junctions, oocyte meiosis, spliceosome, ERBB signaling pathway and ubiquitin-mediated proteolysis.

Conclusions

Collectively, we developed and validated a novel robust nine RBPs for OSCC prognosis prediction. The nine RBPs could serve as an independent and reliable prognostic biomarker and guiding clinical therapy for OSCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A, Global cancer statistics (2018) GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(2018):394–424

    PubMed  Google Scholar 

  2. Zhao X, Sun S, Zeng X, Cui L (2018) Expression profiles analysis identifies a novel three-mRNA signature to predict overall survival in oral squamous cell carcinoma. Am J Cancer Res 8:450–461

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359-386

    PubMed  CAS  Google Scholar 

  4. Corley M, Burns MC, Yeo GW (2020) How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol Cell 78:9–29

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Hentze MW, Castello A, Schwarzl T, Preiss T (2018) A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol 19:327–341

    PubMed  CAS  Google Scholar 

  6. Qin H, Ni H, Liu Y, Yuan Y, Xi T, Li X, Zheng L (2020) RNA-binding proteins in tumor progression. J Hematol Oncol 13:90

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Chatterji P, Rustgi AK (2018) RNA binding proteins in intestinal epithelial biology and colorectal cancer. Trends Mol Med 24:490–506

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Xie M, Ma T, Xue J, Ma H, Sun M, Zhang Z, Liu M, Liu Y, Ju S, Wang Z, De W (2019) The long intergenic non-protein coding RNA 707 promotes proliferation and metastasis of gastric cancer by interacting with mRNA stabilizing protein HuR. Cancer Lett 443:67–79

    PubMed  CAS  Google Scholar 

  9. McCullough MJ, Prasad G, Farah CS (2010) Oral mucosal malignancy and potentially malignant lesions: an update on the epidemiology, risk factors, diagnosis and management. Aust Dent J 55(Suppl 1):61–65

    PubMed  Google Scholar 

  10. Kartha VK, Alamoud KA, Sadykov K, Nguyen BC, Laroche F, Feng H, Lee J, Pai SI, Varelas X, Egloff AM, Snyder-Cappione JE, Belkina AC, Bais MV, Monti S, Kukuruzinska MA (2018) Functional and genomic analyses reveal therapeutic potential of targeting β-catenin/CBP activity in head and neck cancer. Genome Med 10:54

    PubMed  PubMed Central  Google Scholar 

  11. Pereira B, Billaud M, Almeida R (2017) RNA-binding proteins in cancer: old players and new actors, trends. Cancer 3:506–528

    CAS  Google Scholar 

  12. Coppin L, Leclerc J, Vincent A, Porchet N, Pigny P (2018) Messenger RNA life-cycle in cancer cells: emerging role of conventional and non-conventional RNA-binding proteins. Int J Mol Sci 19:650

    PubMed  PubMed Central  Google Scholar 

  13. Mucha B, Qie S, Bajpai S, Tarallo V, Diehl JN, Tedeschi F, Zhou G, Gao Z, Flashner S, Klein-Szanto AJ, Hibshoosh H, Masataka S, Chajewski OS, Majsterek I, Pytel D, Hatzoglou M, Der CJ, Nakagawa H, Bass AJ, Wong KK, Fuchs SY, Rustgi AK, Jankowsky E, Diehl JA (2022) Tumor suppressor mediated ubiquitylation of hnRNPK is a barrier to oncogenic translation. Nat Commun 13:6614

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Lu X, Zhong J, Liu L, Zhang W, Zhao S, Chen L, Wei Y, Zhang H, Wu J, Chen W, Ge F (2022) The function and regulatory mechanism of RNA-binding proteins in breast cancer and their future clinical treatment prospects. Front Oncol 12:929037

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348

    PubMed  CAS  Google Scholar 

  16. Syrigos KN, Katirtzoglou N, Kotteas E, Harrington K (2008) Adhesion molecules in lung cancer: implications in the pathogenesis and management. Curr Pharm Des 14:2173–2183

    PubMed  CAS  Google Scholar 

  17. Schimmel P, Tao J, Hill J (1998) Aminoacyl tRNA synthetases as targets for new anti-infectives. FASEB J 12:1599–1609

    PubMed  CAS  Google Scholar 

  18. Nowaczyk MJ, Huang L, Tarnopolsky M, Schwartzentruber J, Majewski J, Bulman DE, Hartley T, Boycott KM (2017) A novel multisystem disease associated with recessive mutations in the tyrosyl-tRNA synthetase (YARS) gene. Am J Med Genet A 173:126–134

    PubMed  CAS  Google Scholar 

  19. Tracewska-Siemiątkowska A, Haer-Wigman L, Bosch D, Nickerson D, Bamshad MJ, van de Vorst M, Rendtorff ND, Möller C, Kjellström U, Andréasson S, Cremers F, Tranebjærg L (2017) An expanded multi-organ disease phenotype associated with mutations in YARS. Genes (Basel). https://doi.org/10.3390/genes8120381

    Article  PubMed  Google Scholar 

  20. Fuchs SA, Schene IF, Kok G, Jansen JM, Nikkels P, van Gassen K, Terheggen-Lagro S, van der Crabben SN, Hoeks SE, Niers L, Wolf NI, de Vries MC, Koolen DA, Houwen R, Mulder MF, van Hasselt PM (2019) Aminoacyl-tRNA synthetase deficiencies in search of common themes. Genet Med 21:319–330

    PubMed  CAS  Google Scholar 

  21. Zhang C, Lin X, Zhao Q, Wang Y, Jiang F, Ji C, Li Y, Gao J, Li J, Shen L (2020) YARS as an oncogenic protein that promotes gastric cancer progression through activating PI3K-Akt signaling. J Cancer Res Clin Oncol 146:329–342

    PubMed  PubMed Central  Google Scholar 

  22. Hsu CW, Chang KP, Huang Y, Liu HP, Hsueh PC, Gu PW, Yen WC, Wu CC (2019) Proteomic profiling of paired interstitial fluids reveals dysregulated pathways and salivary NID1 as a biomarker of oral cavity squamous cell carcinoma. Mol Cell Proteomics 18:1939–1949

    PubMed  PubMed Central  Google Scholar 

  23. Fukui H, Hanaoka R, Kawahara A (2009) Noncanonical activity of seryl-tRNA synthetase is involved in vascular development. Circ Res 104:1253–1259

    PubMed  CAS  Google Scholar 

  24. Herzog W, Müller K, Huisken J, Stainier DY (2009) Genetic evidence for a noncanonical function of seryl-tRNA synthetase in vascular development. Circ Res 104:1260–1266

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Shi Y, Xu X, Zhang Q, Fu G, Mo Z, Wang GS, Kishi S, Yang XL (2014) tRNA synthetase counteracts c-Myc to develop functional vasculature. Elife 3:e02349

    PubMed  PubMed Central  Google Scholar 

  26. Zou G, Zhang X, Wang L, Li X, Xie T, Zhao J, Yan J, Wang L, Ye H, Jiao S, Xiang R, Shi Y (2020) Herb-sourced emodin inhibits angiogenesis of breast cancer by targeting VEGFA transcription. Theranostics 10:6839–6853

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Panse VG, Johnson AW (2010) Maturation of eukaryotic ribosomes: acquisition of functionality. Trends Biochem Sci 35:260–266

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Sengupta J, Bussiere C, Pallesen J, West M, Johnson AW, Frank J (2010) Characterization of the nuclear export adaptor protein Nmd3 in association with the 60S ribosomal subunit. J Cell Biol 189:1079–1086

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Bai B, Moore HM, Laiho M (2013) CRM1 and its ribosome export adaptor NMD3 localize to the nucleolus and affect rRNA synthesis. Nucleus 4:315–325

    PubMed  PubMed Central  Google Scholar 

  30. Chen C, Wang B (2018) Brucea javanica oil emulsion alleviates cachexia induced by Lewis lung cancer cells in mice. J Drug Target 26:222–230

    PubMed  CAS  Google Scholar 

  31. Ge Y, Jin J, Li J, Ye M, Jin X (2022) The roles of G3BP1 in human diseases (review). Gene 821:146294

    PubMed  CAS  Google Scholar 

  32. Zhang LN, Zhao L, Yan XL, Huang YH (2019) Loss of G3BP1 suppresses proliferation, migration, and invasion of esophageal cancer cells via Wnt/β-catenin and PI3K/AKT signaling pathways. J Cell Physiol 234:20469–20484

    PubMed  CAS  Google Scholar 

  33. Hu X, Xia K, Xiong H, Su T (2021) G3BP1 may serve as a potential biomarker of proliferation, apoptosis, and prognosis in oral squamous cell carcinoma. J Oral Pathol Med 50:995–1004

    PubMed  CAS  Google Scholar 

  34. Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A (1998) Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev 12:186–197

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Verschueren K, Huylebroeck D (1999) Remarkable versatility of Smad proteins in the nucleus of transforming growth factor-beta activated cells. Cytokine Growth Factor Rev 10:187–199

    PubMed  CAS  Google Scholar 

  36. Miyazono K (2000) TGF-beta signaling by Smad proteins. Cytokine Growth Factor Rev 11:15–22

    PubMed  CAS  Google Scholar 

  37. Park JE, Park JS, Jang SY, Park SH, Kim JW, Ki CS, Kim DK (2019) A novel SMAD6 variant in a patient with severely calcified bicuspid aortic valve and thoracic aortic aneurysm. Mol Genet Genomic Med 7:e620

    PubMed  PubMed Central  Google Scholar 

  38. Jeon HS, Dracheva T, Yang SH, Meerzaman D, Fukuoka J, Shakoori A, Shilo K, Travis WD, Jen J (2008) SMAD6 contributes to patient survival in non-small cell lung cancer and its knockdown reestablishes TGF-beta homeostasis in lung cancer cells. Cancer Res 68:9686–9692

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Choi KC, Lee YS, Lim S, Choi HK, Lee CH, Lee EK, Hong S, Kim IH, Kim SJ, Park SH (2006) Smad6 negatively regulates interleukin 1-receptor-Toll-like receptor signaling through direct interaction with the adaptor Pellino-1. Nat Immunol 7:1057–1065

    PubMed  CAS  Google Scholar 

  40. Lönn P, Morén A, Raja E, Dahl M, Moustakas A (2009) Regulating the stability of TGFbeta receptors and Smads. Cell Res 19:21–35

    PubMed  Google Scholar 

  41. Tan HL, Glen E, Töpf A, Hall D, O’Sullivan JJ, Sneddon L, Wren C, Avery P, Lewis RJ, ten Dijke P, Arthur HM, Goodship JA, Keavney BD (2012) Nonsynonymous variants in the SMAD6 gene predispose to congenital cardiovascular malformation. Hum Mutat 33:720–727

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Lu W, Sun J, Zhou H, Wang F, Zhao C, Li K, Fan C, Ding G, Wang J (2020) HNF1B inhibits cell proliferation via repression of SMAD6 expression in prostate cancer. J Cell Mol Med 24:14539–14548

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Bayat Z, Ghaemi Z, Behmanesh M, Soltani BM (2021) Hsa-miR-186-5p regulates TGFβ signaling pathway through expression suppression of SMAD6 and SMAD7 genes in colorectal cancer. Biol Chem 402:469–480

    PubMed  CAS  Google Scholar 

  44. Liu L, Zhang C, Wang J, Liu X, Qu H, Zhang G, Liang T, Wang J, Zhang J (2021) A high level of lncFGD5-AS1 inhibits epithelial-to-Mesenchymal transition by regulating the miR-196a-5p/SMAD6/BMP axis in gastric Cancer. BMC Cancer 21:453

    PubMed  PubMed Central  Google Scholar 

  45. Park JH, Ameri AH, Dempsey KE, Conrad DN, Kem M, Mino-Kenudson M, Demehri S (2021) Nuclear IL-33/SMAD signaling axis promotes cancer development in chronic inflammation. EMBO J 40:e106151

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Mi W, Zheng Z, Lu JD, Duan SQ, Zhang J, Zhang HQ, Ding YX, Yin J, Cao F, Zhang J, Li F (2022) KLF16 promotes pancreatic adenocarcinoma cell proliferation and migration by positively regulating SMAD6. World J Gastrointest Oncol 14:2157–2169

    PubMed  PubMed Central  Google Scholar 

  47. Miyazono K (2000) Positive and negative regulation of TGF-beta signaling. J Cell Sci 113(Pt 7):1101–1109

    PubMed  CAS  Google Scholar 

  48. Osawa H, Nakajima M, Kato H, Fukuchi M, Kuwano H (2004) Prognostic value of the expression of Smad6 and Smad7, as inhibitory Smads of the TGF-beta superfamily, in esophageal squamous cell carcinoma. Anticancer Res 24:3703–3709

    PubMed  CAS  Google Scholar 

  49. Mangone FR, Walder F, Maistro S, Pasini FS, Lehn CN, Carvalho MB, Brentani MM, Snitcovsky I, Federico MH (2010) Smad2 and Smad6 as predictors of overall survival in oral squamous cell carcinoma patients. Mol Cancer 9:106

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The Startup Fund for scientific research, University of Chinese Academy of Sciences—Shenzhen Hospital, HRF-2020012, Xuegang Hu, the Guangming District Economic Development Special Fund, 2021R01063, Xuegang Hu, 2021R01065, Long Zhang, Natural Science Foundation of Fujian Province, 2020J011142, Lina Fan, Shenzhen Science and Technology Innovation Committee Foundation, JCYJ20180302145402866, Baorong Zhang, Education and Teaching Reform Research Project of Fujian Medical University, J21017, Lina Fan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuegang Hu or Chunyu Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liu, S., Zhu, Y. et al. A novel and independent survival prognostic model for OSCC: the functions and prognostic values of RNA-binding proteins. Eur Arch Otorhinolaryngol 281, 397–409 (2024). https://doi.org/10.1007/s00405-023-08200-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-023-08200-9

Keywords

Navigation