Skip to main content
Log in

PROPELLER diffusion weighted imaging for diagnosis of cholesteatoma in comparison with surgical and histopathological results: emphasis on false positivity and false negativity

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the role of non-echo planar diffusion weighted imaging (DWI) using “periodically rotated overlapping parallel lines with enhanced reconstruction” (PROPELLER) sequence for the diagnosis of cholesteatoma compared to surgical and histopathological results in an attempt to determine the factors causing false negative and false positive diagnoses.

Methods

Patients who had PROPELLER DWI before ear surgery were retrospectively reviewed. The presence of a lesion with diffusion restriction on PROPELLER DWI was accepted as positive for cholesteatoma, and the results were compared to the intraoperative and histopathological findings.

Results

A total of 112 ears in 109 patients were reviewed. On PROPELLER DWI, a lesion with diffusion restriction was found in 101 (90.2%) ears, while in 11 (9.8%) of the patients, no diffusion restriction was found. Surgery and histopathological analysis revealed a cholesteatoma in 100 (89.3%) ears, while in 12 (10.7%) ears, no cholesteatoma was found surgically. There were 96 (85.7%) true positives, 7 (6.2%) true negatives, 5 (4.5%) false positives and 4 (3.6%) false negatives. The accuracy, sensitivity, specificity, positive predictive and negative predictive values of non-echo planar DWI were calculated to be 91.96%, 96%, 58.33%, 95.05%, and 63.64%, respectively.

Conclusion

Non-echo planar DWI using PROPELLER sequence has high accuracy, sensitivity and positive predictive value and can be used for the detection of cholesteatoma. The external auditory canal, postoperative ears and small lesions should be evaluated with caution to avoid false results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Available upon request.

References

  1. Kuo CL (2015) Etiopathogenesis of acquired cholesteatoma: prominent theories and recent advances in biomolecular research. Laryngoscope 125:234–240. https://doi.org/10.1002/lary.24890

    Article  PubMed  Google Scholar 

  2. Schwartz KM, Lane JI, Bolster BD Jr, Neff BA (2011) The utility of diffusion-weighted imaging for cholesteatoma evaluation. AJNR Am J Neuroradiol 32:430–436. https://doi.org/10.3174/ajnr.A2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aikele P, Kittner T, Offergeld C, Kaftan H, Hüttenbrink KB, Laniado M (2003) Diffusion-weighted MR imaging of cholesteatoma in pediatric and adult patients who have undergone middle ear surgery. AJR Am J Roentgenol 181:261–265. https://doi.org/10.2214/ajr.181.1.1810261

    Article  CAS  PubMed  Google Scholar 

  4. Ayyaril NA, ChirukandathJayasankaran S, Menon U, Moorthy S (2022) Role of diffusion-weighted magnetic resonance imaging in the evaluation of clinically suspected cholesteatoma cases. Indian J Otolaryngol Head Neck Surg 74:719–723. https://doi.org/10.1007/s12070-021-02526-8

    Article  PubMed  Google Scholar 

  5. Piekarek A, Zatoński T, Kolator M, Bladowska J, Sąsiadek M, Zimny A (2022) The value of different diffusion-weighted magnetic resonance techniques in the diagnosis of middle ear cholesteatoma. Is there still an indication for echo-planar diffusion-weighted imaging? Pol J Radiol 87:e51–e57. https://doi.org/10.5114/pjr.2022.113194

    Article  PubMed  PubMed Central  Google Scholar 

  6. Amoodi H, Mofti A, Fatani NH, Alhatem H, Zabidi A, Ibrahim M (2022) Non-echo planar diffusion-weighted imaging in the detection of recurrent or residual cholesteatoma: a systematic review and meta-analysis of diagnostic studies. Cureus 14:e32127. https://doi.org/10.7759/cureus.32127

    Article  PubMed  PubMed Central  Google Scholar 

  7. Muzaffar J, Metcalfe C, Colley S, Coulson C (2017) Diffusion-weighted magnetic resonance imaging for residual and recurrent cholesteatoma: a systematic review and meta-analysis. Clin Otolaryngol 42:536–543. https://doi.org/10.1111/coa.12762

    Article  CAS  PubMed  Google Scholar 

  8. Li PM, Linos E, Gurgel RK, Fischbein NJ, Blevins NH (2013) Evaluating the utility of non-echo-planar diffusion-weighted imaging in the preoperative evaluation of cholesteatoma: a meta-analysis. Laryngoscope 123:1247–1250. https://doi.org/10.1002/lary.23759

    Article  PubMed  Google Scholar 

  9. Moreno-Ramos MD, Pérez MO, Ibáñez Rodríguez JA, Gómez Galán MJ, Ramos Medrano FJ (2019) Diffusion-weighted magnetic resonance imaging with echo-planar and non-echo-planar (PROPELLER) techniques in the clinical evaluation of cholesteatoma. Arch Otolaryngol Rhinol 5:014–019

    Google Scholar 

  10. Lehmann P, Saliou G, Brochart C, Page C, Deschepper B, Vallée JN, Deramond H (2009) 3T MR imaging of postoperative recurrent middle ear cholesteatomas: value of periodically rotated overlapping parallel lines with enhanced reconstruction diffusion-weighted MR imaging. AJNR Am J Neuroradiol 30:423–427. https://doi.org/10.3174/ajnr.A1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kasbekar AV, Scoffings DJ, Kenway B, Cross J, Donnelly N, Lloyd SW, Moffat D, Axon PR (2011) Non echo planar, diffusion-weighted magnetic resonance imaging (periodically rotated overlapping parallel lines with enhanced reconstruction sequence) compared with echo planar imaging for the detection of middle-ear cholesteatoma. J Laryngol Otol 125:376–380. https://doi.org/10.1017/S0022215110002197

    Article  CAS  PubMed  Google Scholar 

  12. Mateos-Fernández M, Mas-Estellés F, de Paula-Vernetta C, Guzmán-Calvete A, Villanueva-Martí R, Morera-Pérez C (2012) The role of diffusion-weighted magnetic resonance imaging in cholesteatoma diagnosis and follow-up. Study with the diffusion PROPELLER technique. Acta otorrinolaringologica espanola 63:436–442. https://doi.org/10.1016/j.otorri.2012.05.002

    Article  PubMed  Google Scholar 

  13. Clarke SE, Mistry D, AlThubaiti T, Khan MN, Morris D, Bance M (2017) Diffusion-weighted magnetic resonance imaging of cholesteatoma using PROPELLER at 1.5T: a single-centre retrospective study. Can Assoc Radiol J 68:116–121. https://doi.org/10.1016/j.carj.2016.05.002

    Article  PubMed  Google Scholar 

  14. Karandikar A, Loke SC, Goh J, Yeo SB, Tan TY (2015) Evaluation of cholesteatoma: our experience with DW Propeller imaging. Acta Radiol 56:1108–1112. https://doi.org/10.1177/0284185114549568

    Article  PubMed  Google Scholar 

  15. Kálmán J, Horváth T, Liktor B, Dános K, Tamás L, Gődény M, Polony G (2021) Limitations of non-echo planar diffusion weighted magnetic resonance imaging (non-EPI MRI) in cholesteatoma surveillance after ossicular chain reconstruction. A prospective study. Auris Nasus Larynx 48:630–635. https://doi.org/10.1016/j.anl.2020.11.019

    Article  PubMed  Google Scholar 

  16. Locketz GD, Li PM, Fischbein NJ, Holdsworth SJ, Blevins NH (2016) Fusion of computed tomography and PROPELLER diffusion-weighted magnetic resonance imaging for the detection and localization of middle ear cholesteatoma. JAMA Otolaryngol Head Neck Surg 142:947–953. https://doi.org/10.1001/jamaoto.2016.1663

    Article  PubMed  Google Scholar 

  17. Dremmen MH, Hofman PA, Hof JR, Stokroos RJ, Postma AA (2012) The diagnostic accuracy of non-echo-planar diffusion-weighted imaging in the detection of residual and/or recurrent cholesteatoma of the temporal bone. AJNR Am J Neuroradiol 33:439–444. https://doi.org/10.3174/ajnr.A2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Foer B, Vercruysse JP, Bernaerts A, Deckers F, Pouillon M, Somers T, Casselman J, Offeciers E (2008) Detection of postoperative residual cholesteatoma with non-echo-planar diffusion-weighted magnetic resonance imaging. Otol Neurotol 29:513–517. https://doi.org/10.1097/MAO.0b013e31816c7c3b

    Article  PubMed  Google Scholar 

  19. von Kalle T, Amrhein P, Koitschev A (2015) Non-echoplanar diffusion-weighted MRI in children and adolescents with cholesteatoma: reliability and pitfalls in comparison to middle ear surgery. Pediatr Radiol 45:1031–1038. https://doi.org/10.1007/s00247-015-3287-y

    Article  Google Scholar 

  20. Lingam RK, Nash R, Majithia A, Kalan A, Singh A (2016) Non-echoplanar diffusion weighted imaging in the detection of post-operative middle ear cholesteatoma: navigating beyond the pitfalls to find the pearl. Insights Imaging 7:669–678. https://doi.org/10.1007/s13244-016-0516-3

    Article  PubMed  PubMed Central  Google Scholar 

  21. Henninger B, Kremser C (2017) Diffusion weighted imaging for the detection and evaluation of cholesteatoma. World J Radiol 9:217–222. https://doi.org/10.4329/wjr.v9.i5.217

    Article  PubMed  PubMed Central  Google Scholar 

  22. Muhonen EG, Mahboubi H, Moshtaghi O et al (2020) False-positive cholesteatomas on non-echoplanar diffusion-weighted magnetic resonance imaging. Otol Neurotol 41:e588–e592. https://doi.org/10.1097/MAO.0000000000002606

    Article  PubMed  Google Scholar 

  23. Esmaili AA, Hasan Z, Withers SJ, Kuthubutheen J (2021) A retrospective cohort study on false positive diffusion weighted MRI in the detection of cholesteatoma. Aust J Otolaryngol 4:1–6. https://doi.org/10.21037/ajo-20-57

    Article  Google Scholar 

  24. Dhepnorrarat RC, Wood B, Rajan GP (2009) Postoperative non-echo-planar diffusion-weighted magnetic resonance imaging changes after cholesteatoma surgery: implications for cholesteatoma screening. Otol Neurotol 30:54–58. https://doi.org/10.1097/MAO.0b013e31818edf4a

    Article  PubMed  Google Scholar 

  25. Hervochon R, Elmaleh-Berges M, Francois M et al (2020) Positive predictive value for diffusion-weighted magnetic resonance imaging in pediatric cholesteatoma: a retrospective study. Int J Pediatr Otorhinolaryngol 139:110416. https://doi.org/10.1016/j.ijporl.2020.110416

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aslihan Semiz-Oysu.

Ethics declarations

Conflict of interest

The authors have no relevant financial, non-financial or competing interests to disclose.

Ethical approval

This retrospective chart review study involving human participants was in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The Human Investigation Committee (IRB) of Umraniye Training and Research Hospital approved this study and due to the retrospective nature informed consent was waived.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semiz-Oysu, A., Oysu, C., Kulali, F. et al. PROPELLER diffusion weighted imaging for diagnosis of cholesteatoma in comparison with surgical and histopathological results: emphasis on false positivity and false negativity. Eur Arch Otorhinolaryngol 280, 4845–4850 (2023). https://doi.org/10.1007/s00405-023-08001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-023-08001-0

Keywords

Navigation