Skip to main content
Log in

Relationship between level CPAP titration, anthropometric variables, and drug-induced sleep endoscopy DISE

  • Head and Neck
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Introduction

Subjects with palatal obstruction alone vs. multilevel obstruction on DISE had better outcomes after palate surgery. We asked ourselves if the therapeutic level positive airway pressure (PAP) titration could predict the level of airway obstruction and its complexity.

Purpose

The aim of this study was to identify possible relationships between therapeutic level of positive airway pressure initial titration and levels of collapse in drug-induced sleep endoscopy (DISE). A secondary objective was to establish the relationship the other variables and DISE.

Methods

We analyzed retrospective clinical histories between March 2020 to March 2022 of 37 patients with polysomnography or cardiorespiratory polygraphy studies and PAP initial titration who were taken to drug-induced sleep endoscopy. Sleep study data, anthropometric variables, and patterns of airway collapse during DISE were analyzed with PAP initial titration levels.

Results

Most of the patients with complex collapse had concentric velum collapse (p < 0.006). A significant association was found between the apnea–hypopnea index (AHI) and oropharyngeal collapse; (p < 0.0030) and finally we demonstrated relationship between neck circumference and gender with epiglottis collapse (p < 0.046), (p < 0.037), respectively.

Conclusions

Our findings show a strong relationship between that complex collapses and concentric velum collapse; patients with greater oropharyngeal collapse have a higher mean AHI. Patients without epiglottic collapse have a higher mean neck circumference. An association between mean pressure initial titration and complex collapse could not be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP (2010) Pathophysiology of sleep apnea. Physiol Rev 90(1):47–112. https://doi.org/10.1152/physrev.00043.2008

    Article  CAS  Google Scholar 

  2. Senaratna CV, Perret JL, Lodge CJ et al (2017) Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev 34:70–81. https://doi.org/10.1016/j.smrv.2016.07.002

    Article  Google Scholar 

  3. Verbraecken JA, De Backer WA (2009) Upper airway mechanics. Respiration 78(2):121–133. https://doi.org/10.1159/000222508

    Article  Google Scholar 

  4. Kushida CA, Littner MR, Morgenthaler T, Alessi CA et al (2005) Practice parameters for the indications for polysomnography and related procedures: an update for 2005. Sleep 28(4):499–521. https://doi.org/10.1093/sleep/28.4.499

    Article  Google Scholar 

  5. Randerath WJ, Verbraecken J, Andreas S et al (2011) Non-CPAP therapies in obstructive sleep apnoea. Eur Respir J 37(5):1000–1028. https://doi.org/10.1183/09031936.00099710

    Article  CAS  Google Scholar 

  6. De Vito A, Carrasco Llatas M, Ravesloot MJ et al (2018) European position paper on drug-induced sleep endoscopy: 2017 update. Clin Otolaryngol 43(6):1541–1552. https://doi.org/10.1111/coa.13213

    Article  Google Scholar 

  7. Croft CB, Pringle M (1991) Sleep nasendoscopy: a technique of assessment in snoring and obstructive sleep apnoea. Clin Otolaryngol Allied Sci 16(5):504–509. https://doi.org/10.1111/j.1365-2273.1991.tb02103.x

    Article  CAS  Google Scholar 

  8. Chong K, Vito A, Vicini C (2019) Drug-induced sleep endoscopy in treatment options selection. Sleep Med Clin 14(1):33–40. https://doi.org/10.1016/j.jsmc.2018.11.001

    Article  Google Scholar 

  9. Vanderveken OM (2018) Drug-induced sleep endoscopy (DISE) as a guide towards upper airway behavior and treatment outcome: the quest for a vigorous standardization of DISE. Sleep Breath 22(4):897–899. https://doi.org/10.1007/s11325-018-1743-2

    Article  Google Scholar 

  10. Barends CR, Absalom A, van Minnen B et al (2017) Dexmedetomidine versus midazolam in procedural sedation. A systematic review of efficacy and safety. PLoS One 12(1):e0169525. https://doi.org/10.1371/journal.pone.0169525

  11. Hessel NS, Vries N (2004) Increase of the apnoea-hypopnoea index after uvulopalatopharyngoplasty: analysis of failure. Clin Otolaryngol Allied Sci 29:682–685. https://doi.org/10.1111/j.1365-2273.2004.00864.x

    Article  CAS  Google Scholar 

  12. Johal A, Battagel JM, Kotecha BT (2005) Sleep nasendoscopy: a diagnostic tool for predicting treatment success with mandibular advancement splints in obstructive sleep apnoea. Eur J Orthod 27:607–614. https://doi.org/10.1093/ejo/cji063

    Article  Google Scholar 

  13. Op de Beeck S, Dieltjens M, Verbruggen AE et al (2019) Phenotypic labelling using drug-induced sleep endoscopy improves patient selection for mandibular advancement device outcome: a prospective study. J Clin Sleep Med 15(8):1089–1099. https://doi.org/10.5664/jcsm.7796

    Article  Google Scholar 

  14. Torre C, Camacho M, Liu SY et al (2016) Epiglottis collapse in adult obstructive sleep apnea: a systematic review. Laryngoscope 126(2):515–523. https://doi.org/10.1002/lary.25589

    Article  Google Scholar 

  15. Woodson BT (2015) A method to describe the pharyngeal airway. Laryngoscope 125:1233–1238. https://doi.org/10.1002/lary.24972

    Article  Google Scholar 

  16. Catalfumo FJ, Golz A, Westerman ST et al (1998) The epiglottis and obstructive sleep apnoea syndrome. J Laryngol Otol 112:940–943. https://doi.org/10.1017/s0022215100142136

    Article  CAS  Google Scholar 

  17. Kim H, Lee M, Hwangbo Y et al (2020) Automatic derivation of continuous positive airway pressure settings: comparison with in-laboratory titration. J Clin Neurol 16(2):314–320. https://doi.org/10.3988/jcn.2020.16.2.314

    Article  Google Scholar 

  18. Gao W, Jin Y, Sun M et al (2012) Is automatic CPAP titration as effective as manual CPAP titration in OSAHS patients? A meta-analysis. Sleep Breath 16(2):329–340. https://doi.org/10.1007/s11325-011-0495-z

    Article  Google Scholar 

  19. Kezirian EJ, Hohenhorst W, Vries N (2011) Drug-induced sleep endoscopy: the VOTE classification. Eur Arch Otorhinolaryngol 268(8):1233–1236. https://doi.org/10.1007/s00405-011-1633-8

    Article  Google Scholar 

  20. Hsu Y, Lan M, Huang Y et al (2021) The correlation between drug-induced sleep endoscopy findings and severity of obstructive sleep apnea. Auris Nasus Larynx 48(3):434–440. https://doi.org/10.1016/j.anl.2020.09.018

    Article  Google Scholar 

  21. Carrasco-Llatas M, Martínez-Ruiz de Apodaca P, Vaz de Castro J et al (2019) Drug-induced sleep endoscopy as a tool for surgical planning. Curr Otorhinolaryngol Rep 7:1–9. https://doi.org/10.1007/s40136-019-00220-6

    Article  Google Scholar 

  22. Van de Perck E, Heiser C, Vanderveken OM (2022) Concentric vs anteroposterior-laterolateral collapse of the soft palate in patients with obstructive sleep apnea. Otolaryngol Head Neck Surg 166(4):782–785. https://doi.org/10.1177/01945998211026844

    Article  Google Scholar 

  23. Zhao C, Viana A, Ma Y et al (2020) High tongue position is a risk factor for upper airway concentric collapse in obstructive sleep apnea: observation through sleep endoscopy. Nat Sci Sleep 12:767–774. https://doi.org/10.2147/NSS.S273129

    Article  Google Scholar 

  24. Lan M-C, Hsu Y-B, Lan M-Y et al (2018) The predictive value of drug-induced sleep endoscopy for CPAP titration in OSA patients. Sleep Breath 22(4):949–954. https://doi.org/10.1007/s11325-017-1600-8

    Article  Google Scholar 

  25. Shuo Y, Jacobowitz O (2017) Does sleep endoscopy staging pattern correlate with outcome of advanced palatopharyngoplasty for moderate to severe obstructive sleep apnea? J Clin Sleep Med 13(10):1137–1144. https://doi.org/10.5664/jcsm.6756

    Article  Google Scholar 

  26. Koo SK, Choi JW, Myung NS et al (2013) Analysis of obstruction site in obstructive sleep apnea syndrome patients by drug induced sleep endoscopy. Am J Otolaryngol 34(6):626–630. https://doi.org/10.1016/j.amjoto.2013.07.013

    Article  Google Scholar 

  27. Kuo C, Hsin L, Lee L et al (2021) Prediction of epiglottic collapse in obstructive sleep apnea patients: epiglottic length. Nat Sci Sleep 13:1985–1992. https://doi.org/10.2147/NSS.S336019

    Article  Google Scholar 

  28. Yui M, Tominaga Q, Lopes B et al (2020) Can drug-induced sleep endoscopy (DISE) predict compliance with positive airway pressure therapy? A pilot study. Sleep Breath 26(1):109–116. https://doi.org/10.1007/s11325-021-02360-w

    Article  Google Scholar 

  29. Cavaliere M, Russo F, Iemma M (2013) Awake versus drug- induced sleep endoscopy: evaluation of airway obstruction in obstructive sleep apnea/hypopnoea syndrome. Laryngoscope 123:2315–2318. https://doi.org/10.1002/lary.23881

    Article  Google Scholar 

  30. Landry S, Joosten S, Eckert D et al (2017) Therapeutic CPAP level predicts upper airway collapsibility in patients with obstructive sleep apnea. Sleep 40(6):zsx056. https://doi.org/10.1093/sleep/zsx056

    Article  Google Scholar 

  31. Wang T, Huang Y, Lin T et al (2022) Outcome of CPAP titration for moderate-to-severe OSA under drug-induced sleep endoscopy: a randomized controlled crossover trial. Front Neurol 13:882465. https://doi.org/10.3389/fneur.2022.882465

    Article  Google Scholar 

  32. Patil S, Ayappa I, Caples S et al (2019) Treatment of adult obstructive sleep apnea with positive airway pressure: an American academy of sleep medicine systematic review, meta-analysis, and GRADE assessment. J Clin Sleep Med 15(2):301–334. https://doi.org/10.5664/jcsm.7638

    Article  Google Scholar 

  33. Duarte R, Magalhães F, Gozal D (2022) Clinical and polysomnographic predictors of suboptimal auto-adjusting CPAP titration in adult OSA patients: a single-center study. Eur Arch Otorhinolaryngol. https://doi.org/10.1007/s00405-022-07605-2

    Article  Google Scholar 

  34. Morgenthaler TI, Aurora RN, Brown T et al (2008) Practice parameters for the use of autotitrating continuous positive airway pressure devices for titrating pressures and treating adult patients with obstructive sleep apnea syndrome: an update for 2007. An American Academy of Sleep Medicine report. Sleep 31:141–147. https://doi.org/10.1093/sleep/31.1.141

    Article  Google Scholar 

Download references

Funding

No funding was used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirley Andrea Ramírez Merlano.

Ethics declarations

Conflict of interest

Authors declare they do not have any conflict of interest.

Ethical approval

No ethical approval was required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on sleep apnea syndrome. Guest editors: Manuele Casale, Rinaldi Vittorio.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merlano, S.A.R., Repetto, G.P., Durán, R.A. et al. Relationship between level CPAP titration, anthropometric variables, and drug-induced sleep endoscopy DISE. Eur Arch Otorhinolaryngol 280, 1353–1359 (2023). https://doi.org/10.1007/s00405-022-07771-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-022-07771-3

Keywords

Navigation