Skip to main content

Advertisement

Log in

Is tympanic infrared thermometry valid in non-naive tympanic membranes?

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Objective

To investigate the impact of with tympanostomy tubes (TT) on infrared tympanic membrane thermometer (ITMT) results and to provide a systematic review of ITMT results in non-naïve tympanic membranes.

Study design

Original prospective blinded case series and systematic literature review.

Settings

A single tertiary university-affiliated medical center.

Methods

ITMT measurements of patients with unilateral TT and contralateral naïve control ear were randomly conducted by a single investigator blinded to the TT side before and after cerumen was removed from the external auditory canals. A systematic literature search of “MEDLINE” via “PubMed,” “Embase,” and “Google Scholar” on comparable published cases was performed.

Results

The mean paired differences (95% confidence interval [CI]) between ventilated and non-ventilated ears before and after cerumen removal were 0.08 ºC/0.14 ºF (−0.04 to 0.19 ºC/− 0.07º–0.34º) and 0.62 ºC/1.12 ºF (0.04–0.25 ºC/0.07–0.45 ºF), respectively (P < 0.001 and P = 0.01, respectively).

Conclusion

These findings support the validity and accuracy of ITMT in the setting of ventilated ears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Onur OE, Guneysel O, Akoglu H, Aydin YD, Denizbasi A (2008) Oral, axillary, and tympanic temperature measurements in older and younger adults with or without fever. Eur J Emerg Med 15(6):334–337

    Article  Google Scholar 

  2. Shinozaki TAMOTSU, Deane ROBERT, Perkins FM (1988) Infrared tympanic thermometer: evaluation of a new clinical thermometer. Crit Care Med 16(2):148–150

    Article  CAS  Google Scholar 

  3. Alexander D, Kelly B (1991) Cost effectiveness of tympanic thermometry in the pediatric office setting. Clin Pediatrics 30(4):57–59

    Article  CAS  Google Scholar 

  4. Terndrup TE, Allegra JR, Kealy JA (1989) A comparison of oral, rectal, and tympanic membrane-derived temperature changes after ingestion of liquids and smoking. Am J Emerg Med 7(2):150–154

    Article  CAS  Google Scholar 

  5. Tandberg D, Sklar D (1983) Effect of tachypnea on the estimation of body temperature by an oral thermometer. N Engl J Med 308(16):945–946

    Article  CAS  Google Scholar 

  6. Edge G, Morgan M (1993) The genius infrared tympanic thermometer: an evaluation for clinical use. Anaesthesia 48(7):604–607

    Article  CAS  Google Scholar 

  7. García Callejo FJ, Sanz M, Alpera Lacruz RJ, Martínez Beneyto MP (2004) Otologic determining factors on infra-red tympanic thermometry in children. Acta Otorrinolaringol Esp 55(3):107–113

    Article  Google Scholar 

  8. Fraden J, Lackey RP (1991) Estimation of body sites temperatures from tympanic measurements. Clin Pediatrics 30(4_suppl):65–70

    Article  CAS  Google Scholar 

  9. Tasli H, Gökgöz MC (2018) Does central tympanic membrane perforation affect infrared tympanic thermometer measurements in adults? Journal of otology 13(4):128–130

    Article  Google Scholar 

  10. Doezema D, Lunt M, Tandberg D (1995) Cerumen occlusion lowers infrared tympanic membrane temperature measurement. Acad Emerg Med 2(1):17–19

    Article  CAS  Google Scholar 

  11. Pandey A, Ingrams DR, Jones M, Raman R, Marks ND (2006) Reliability of a tympanic thermometer in measuring temperatures in children after minor ear surgery. J Laryngol Otol 120(5):375–377

    Article  CAS  Google Scholar 

  12. Kelly B, Alexander D (1991) Effect of otitis media on infrared tympanic thermometry. Clin Pediatrics 30(4_suppl):46–48

    Article  CAS  Google Scholar 

  13. Jolin SW, Howell JM, Milzman DP, Stair TO, Butzin CA (1995) Infrared emission detection tympanic thermometry may be useful in diagnosing acute otitis media. Am J Emerg Med 13(1):6–8

    Article  CAS  Google Scholar 

  14. Brennan DF, Falk JL, Rothrock SG, Kerr RB (1994) Infrared tympanic thermometry in the evaluation of pediatric acute otitis media. Acad Emerg Med 1(4):354–359

    Article  CAS  Google Scholar 

  15. Schmäl F, Loh-van den Brink M, Stoll W (2006) Effect of the status after ear surgery and ear pathology on the results of infrared tympanic thermometry. Eur Arch Oto-Rhino-Laryngol Head Neck 263(2):105–110

    Article  Google Scholar 

  16. Bright RA, Moore RM Jr, Jeng LL, Sharkness CM, Hamburger SE, Hamilton PM (1993) The prevalence of tympanostomy tubes in children in the United States, 1988. Am J Public Health 83(7):1026–1028

    Article  CAS  Google Scholar 

  17. Kogan MD, Overpeck MD, Hoffman HJ, Casselbrant ML (2000) Factors associated with tympanostomy tube insertion among preschool-aged children in the United States. Am J Public Health 90(2):245

    Article  CAS  Google Scholar 

  18. Poehling KA, Szilagyi PG, Grijalva CG, Martin SW, LaFleur B, Mitchel E, Barth RD, Nuorti JP, Griffin MR (2007) Reduction of frequent otitis media and pressure-equalizing tube insertions in children after introduction of pneumococcal conjugate vaccine. Pediatrics 119(4):707–715

    Article  Google Scholar 

  19. Bhattacharyya N, Shay SG (2020) Epidemiology of pediatric tympanostomy tube placement in the United States. Otolaryngol-Head Neck Surg 163(3):600–602

    Article  Google Scholar 

  20. Armstrong BW (1954) A new treatment for chronic secretory otitis media. AMA Arch Otolaryngol 59(6):653–654

    Article  CAS  Google Scholar 

  21. Fritz U, Rohrberg M, Lange C, Weyland W, Bräuer A, Braun U (1996) Infrared temperature measurement in the ear canal with the DIATEK 9000 Instatemp and the DIATEK 9000 Thermoguide. Comparison with methods of temperature measurement in other body parts. Anaesthesist 45(11):1059–1066

    Article  CAS  Google Scholar 

  22. Rohrberg M, Fritz U, Weyland W, Braun U (1997) Temperature measurement in the ear canal: comparison of an infrared thermometer with conventional temperature probes and evaluation of clinical factors on infrared measurement. Anasthesiol Intensivmed Notfallmed Schmerztherap AINS 32(7):409–413

    Article  CAS  Google Scholar 

  23. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:97

    Article  Google Scholar 

  24. Peterson J, Welch V, Losos M, Tugwell PJOOHRI (2011) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses, vol 2, pp 1–12. Ottawa Hospital Research Institute, Ottawa

  25. Porwancher R, Sheth A, Remphrey S, Taylor E, Hinkle C, Zervos M (1997) Epidemiological study of hospital-acquired infection with vancomycin-resistant Enterococcus faecium possible transmission by an electronic ear-probe thermometer. Infect Control Hosp Epidemiol 18(11):771–773

    Article  CAS  Google Scholar 

  26. Livornese LL Jr, Dias S, Samel C, Romanowski B, Taylor S, May P, Pitsakis P, Woods G, Kaye D, Levison ME, Johnson CC (1992) Hospital-acquired infection with vancomycin-resistant Enterococcus faecium transmitted by electronic thermometers. Ann Intern Med 117(2):112–116

    Article  Google Scholar 

  27. Peshin SS, Gupta YK (2018) Poisoning due to household products: a ten years retrospective analysis of telephone calls to the National Poisons Information Centre, All India Institute of Medical Sciences, New Delhi, India. J Forensic Leg Med 58:205–211

    Article  Google Scholar 

  28. Kocoglu H, Goksu S, Isik M, Akturk Z, Bayazit YA (2002) Infrared tympanic thermometer can accurately measure the body temperature in children in an emergency room setting. Int J Pediatr Otorhinolaryngol 65(1):39–43

    Article  Google Scholar 

  29. Chue AL, Moore RL, Cavey A, Ashley EA, Stepniewska K, Nosten F, McGready R (2012) Comparability of tympanic and oral mercury thermometers at high ambient temperatures. BMC Res Notes 5(1):1–6

    Article  Google Scholar 

  30. Devrim I, Kara A, Ceyhan M, Tezer H, Uludag AK, Cengiz AB, Yigitkanl I, Seçmeer G (2007) Measurement accuracy of fever by tympanic and axillary thermometry. Pediatr Emerg Care 23(1):16–19

    Article  Google Scholar 

  31. Barnett BJ, Nunberg S, Tai J, Lesser ML, Fridman V, Nichols P, Powell R, Silverman R (2011) Oral and tympanic membrane temperatures are inaccurate to identify fever in emergency department adults. Western J Emerg Med 12(4):505

    Article  Google Scholar 

  32. Matsukawa T, Ozaki M, Hanagata K, Iwashita H, Miyaji T, Kumazawa T (1996) A comparison of four infrared tympanic thermometers with tympanic membrane temperatures measured by thermocouples. Can J Anaesth 43(12):1224–1228

    Article  CAS  Google Scholar 

  33. Burnham RS, McKinley RS, Vincent DD (2006) Three types of skin-surface thermometers: a comparison of reliability, validity, and responsiveness. Am J Phys Med Rehabil 85(7):553–558

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

US: data collection and analysis, manuscript writing; OH: data collection; NM: Literature review; YO: manuscript design; RAE: manuscript writing; GH: critical revision; AW: Critical revision; OJU: data collection and analysis, manuscript writing and systematic literature review.

Corresponding author

Correspondence to Omer J. Ungar.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest relevant to this article to disclose.

Ethical consideration

This study was approved by the Tel Aviv "Sourasky" Medical Center review board (0470–21-TLV).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapira, U., Handzel, O., Muhanna, N. et al. Is tympanic infrared thermometry valid in non-naive tympanic membranes?. Eur Arch Otorhinolaryngol 280, 549–556 (2023). https://doi.org/10.1007/s00405-022-07488-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-022-07488-3

Keywords

Navigation